Course Description
Generative models are a class of machine learning algorithms that define probability distributions over complex, high-dimensional objects such as images, sequences, and graphs. Recent advances in deep neural networks and optimization algorithms have significantly enhanced the capabilities of these models and renewed research interest in them. This course explores the foundational probabilistic principles of deep generative models, their learning algorithms, and popular model families, which include variational autoencoders, generative adversarial networks, autoregressive models, and normalizing flows. The course also covers applications in domains such as computer vision, natural language processing, and biomedicine, and draws connections to the field of reinforcement learning.