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Announcements

Project proposal due tonight

Submit on Gradescope.
Can submit as a team.

Working on resolving presentation slots
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Lecture Outline

1 Optimization Issues in GANs

2 Optimization of f-Divergences

3 Latent Variable Modeling in GANs

4 Domain Translation
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Generative Adversarial Networks: Recap

A two player minimax game between a generator and a
discriminator

x

z

Gθ

Generator
Directed, latent variable model with a deterministic mapping between z
and x given by Gθ

Minimizes a two-sample test objective (in support of the null
hypothesis pdata = pθ)

Discriminator
Any function (e.g., neural network) which tries to distinguish “real”
samples from the dataset and “fake” samples generated from the model
Maximizes the two-sample test objective (in support of the alternate
hypothesis pdata 6= pθ)
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The GAN training algorithm

Sample minibatch of m training points x(1), x(2), . . . , x(m) from D
Sample minibatch of m noise vectors z(1), z(2), . . . , z(m) from pz

Update the generator parameters θ by stochastic gradient descent

∇θV (Gθ,Dφ) =
1

m
∇θ

m∑
i=1

log(1− Dφ(Gθ(z(i))))

Update the discriminator parameters φ by stochastic gradient ascent

∇φV (Gθ,Dφ) =
1

m
∇φ

m∑
i=1

[logDφ(x(i)) + log(1− Dφ(Gθ(z(i))))]

Repeat for fixed number of epochs
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Summary of GAN Models

GAN Pros:

Very high-quality samples.
Can optimize a wide range of divergences between probabilities (next
lecture)
Broadly applicable: only need sampling from G !

GAN Cons:

Only works for continuous variables
Difficult to train
Suffers from mode collapse
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Optimization challenges

Theorem (informal): If the generator updates are made in function
space and discriminator is optimal at every step, then the generator is
guaranteed to converge to the data distribution
Unrealistic assumptions!
In practice, the generator and discriminator loss keeps oscillating
during GAN training

Figure: *

Source: Mirantha Jayathilaka
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Low Dimensional Support

Images are a small subset of all possible n × n matrices. They
represent a small subset of Rn×n.

Similarly, the manifold of outputs from the generator is also small.

Hence, their intersection is small (Arjofsky and Bottou, 2017).
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Vanishing gradients

Recall that the GAN objective is

V (G ,D) = Ex∼pdata [logD(x)] + Ex∼pG [log(1− D(x))]

When discriminator is overconfident, second term is small and has
vanishing grads.

This can happen when the manifolds are disjoint.
A lot of tricks to address this: change the objective, constrain the
power of the GAN, add noise, etc.
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Mode Collapse

GANs are notorious for suffering from mode collapse

Intuitively, this refers to the phenomena where the generator of a
GAN collapses to one or few samples (dubbed as “modes”)
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Mode Collapse

True distribution is a mixture of Gaussians

The generator distribution keeps oscillating between different modes
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Mode Collapse

Fixes to mode collapse are mostly empirically driven:

Alternate architectures
Feature matching: Ex∼pdata

[log F (x)]− Ex∼pG [(F (x)]
Label Smoothing: D outputs numbers close but 6= to 0, 1.
Adding noise to data: make the manifolds closer to each other.
Evaluation criteria based on heuristics and pre-trained vision models.
Better metrics of distribution similarity!
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Beyond KL and Jenson-Shannon Divergence

What choices do we have for d(·)?

KL divergence: Autoregressive Models, Flow models

(scaled and shifted) Jenson-Shannon divergence: original GAN
objective
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Jenson-Shannon Divergence

Also called as the symmetric KL divergence

DJSD [p, q] =
1

2

(
DKL

[
p,

p + q

2

]
+ DKL

[
q,

p + q

2

])
Properties

DJSD [p, q] ≥ 0
DJSD [p, q] = 0 iff p = q
DJSD [p, q] = DJSD [q, p]√
DJSD [p, q] satisfies triangle inequality → Jenson-Shannon Distance

Optimal generator for the JSD/Negative Cross Entropy GAN

pG = pdata

For the optimal discriminator D∗G∗(·) and generator G ∗(·), we have

V (G ∗,D∗G∗(x)) = − log 4
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Jenson-Shannon Divergence

The Jenson-Shannon divergence is mode-seeking.

Consider a multi-modal data distribution that we are trying to
approximating with a uni-model estimator.

The KL divergence (log-likelihood objective) tries to average both
modes. The JSD objective favors fitting one mode well. Recall:

D(Pdata||Pθ) = Ex∼Pdata

[
log

(
Pdata(x)

Pθ(x)

)]
=
∑
x

Pdata(x) log
Pdata(x)

Pθ(x)
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f divergences

Given two densities p and q, the f -divergence is given by

Df (p, q) = Ex∼q

[
f

(
p(x)

q(x)

)]
where f is any convex, lower-semicontinuous function with f (1) = 0.

Convex: Line joining any two points lies above the function

Lower-semicontinuous: function value at any point x0 is close to
f (x0) or greater than f (x0)

Example: KL divergence with f (u) = u log u
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f divergences

Many more f-divergences!
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f -GAN: Variational Divergence Minimization

To use f -divergences as a two-sample test objective for likelihood-free
learning, we need to be able to estimate it only via samples

Fenchel conjugate: For any function f (·), its convex conjugate is
defined as

f ∗(t) = sup
u∈domf

(ut − f (u))
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f -GAN: Variational Divergence Minimization

To use f -divergences as a two-sample test objective for likelihood-free
learning, we need to be able to estimate it only via samples

Duality: f ∗∗ = f . When f (·) is convex, lower semicontinous, so is
f ∗(·)

f (u) = sup
t∈domf ∗

(tu − f ∗(t))

Example: KL divergence with f (u) = u log u
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f -GAN: Variational Divergence Minimization

We can obtain a lower bound to any f -divergence via its Fenchel
conjugate

Df (p, q) = Ex∼q

[
f
(
p(x)
q(x)

)]
= Ex∼q

[
supt∈domf ∗

(
t p(x)q(x) − f ∗(t)

)]
=
∫
X supT∈T (T (x)p(x)− f ∗(T (x))q(x))dx

≥ supT∈T
∫
X (T (x)p(x)− f ∗(T (x))q(x))dx

= supT∈T (Ex∼p [T (x)]− Ex∼q [f ∗(T (x)))])

where T : X 7→ R is an arbitrary class of functions

Note: Lower bound is likelihood-free w.r.t. p and q
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f -GAN: Variational Divergence Minimization

Variational lower bound

Df (p, q) ≥ sup
T∈T

(Ex∼p [T (x)]− Ex∼q [f ∗(T (x)))])

Choose any f -divergence

Let p = pdata and q = pG

Parameterize T by φ and G by θ

Consider the following f -GAN objective

min
θ

max
φ

F (θ, φ) = Ex∼pdata [Tφ(x)]− Ex∼pGθ [f ∗(Tφ(x)))]

Generator Gθ tries to minimize the divergence estimate and
discriminator Tφ tries to tighten the lower bound
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Inferring latent representations in GANs

The generator of a GAN is typically a directed, latent variable model
with latent variables z and observed variables x How can we infer the
latent feature representations in a GAN?

Unlike a normalizing flow model, the mapping G : z 7→ x need not be
invertible

Unlike a variational autoencoder, there is no inference network q(·)
which can learn a variational posterior over latent variables

Solution 1: For any point x, use the activations of the prefinal layer
of a discriminator as a feature representation

Intuition: Similar to supervised deep neural networks, the
discriminator would have learned useful representations for x while
distinguishing real and fake x
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Inferring latent representations in GANs

If we want to directly infer the latent variables z of the generator, we
need a different learning algorithm

A regular GAN optimizes a two-sample test objective that compares
samples of x from the generator and the data distribution

Solution 2: To infer latent representations, we will compare samples
of x, z from the joint distributions of observed and latent variables as
per the model and the data distribution

For any x generated via the model, we have access to z (sampled
from a simple prior p(z))

For any x from the data distribution, the z is however unobserved
(latent)
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Bidirectional Generative Adversarial Networks (BiGAN)

In a BiGAN, we have an encoder network E in addition to the
generator network G

The encoder network only observes x ∼ pdata(x) during training to
learn a mapping E : x 7→ z

As before, the generator network only observes the samples from the
prior z ∼ p(z) during training to learn a mapping G : z 7→ x
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Bidirectional Generative Adversarial Networks (BiGAN)

The discriminator D observes samples from the generative model
z,G (z) and the encoding distribution E (x), x

The goal of the discriminator is to maximize the two-sample test
objective between z,G (z) and E (x), x

After training is complete, new samples are generated via G and
latent representations are inferred via E

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 10 25 / 35



Translating across domains

Image-to-image translation: We are given images from two domains,
X and Y
Paired vs. unpaired examples

Paired examples can be expensive to obtain. Can we translate from
X ↔ Y in an unsupervised manner?
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CycleGAN: Adversarial training across two domains

To match the two distributions, we learn two parameterized
conditional generative models G : X → Y and F : Y → X
G maps an element of X to an element of Y. A discriminator DY
compares the observed dataset Y and the generated samples
Ŷ = G (X )
Similarly, F maps an element of Y to an element of X . A
discriminator DX compares the observed dataset X and the generated
samples X̂ = F (Y )
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CycleGAN: Cycle consistency across domains

Cycle consistency: If we can go from X to Ŷ via G , then it should
also be possible to go from Ŷ back to X via F

F (G (X )) ≈ X
Similarly, vice versa: G (F (Y )) ≈ Y

Overall loss function

min
F ,G ,DX ,DY

LGAN(G ,DY ,X ,Y ) + LGAN(F ,DX ,X ,Y )

+λ (EX [‖F (G (X ))− X‖1] + EY [‖G (F (Y ))− Y ‖1])︸ ︷︷ ︸
cycle consistency
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CycleGAN in practice
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CycleGAN in practice

CycleGANs can also be applied to movies.
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CycleGAN in practice
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CycleGAN in practice
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AlignFlow

What if G is a flow model?

No need to parameterize F separately! F = G−1

Can train via MLE and/or adversarial learning!

Exactly cycle-consistent
F(G(X)) = X
G(F(Y)) = Y
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Summary of GAN Models

GAN Pros:

Very high-quality samples.
Can optimize a wide range of divergences between probabilities (next
lecture)
Broadly applicable: only need sampling from G !

GAN Cons:

Only works for continuous variables
Difficult to train
Suffers from mode collapse
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Summary of Generative Adversarial Networks

Key observation: Samples and likelihoods are not correlated in
practice

Two-sample test objectives allow for learning generative models only
via samples (likelihood-free)

Wide range of two-sample test objectives covering f -divergences (and
more)

Latent representations can be inferred via BiGAN

Cycle-consistent domain translations via CycleGAN and AlignFlow
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