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Announcements

@ Project proposal due tonight

e Submit on Gradescope.
e Can submit as a team.

@ Working on resolving presentation slots

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 10 2/35



Lecture Outline

@ Optimization Issues in GANs
@ Optimization of f-Divergences
© Latent Variable Modeling in GANs

©@ Domain Translation

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 10 3/35



Generative Adversarial Networks: Recap

@ A two player minimax game between a generator and a
discriminator

Go

o Generator
o Directed, latent variable model with a deterministic mapping between z
and x given by Gy
e Minimizes a two-sample test objective (in support of the null
hypOtheSiS Pdata = P9)
o Discriminator
e Any function (e.g., neural network) which tries to distinguish “real”
samples from the dataset and “fake” samples generated from the model
e Maximizes the two-sample test objective (in support of the alternate
hyPOtheSiS Pdata 7é p@)
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The GAN training algorithm

e Sample minibatch of m training points x(1),x(?) ... x(™ from D
@ Sample minibatch of m noise vectors z(1) 22 z(m) from Pz

@ Update the generator parameters 6 by stochastic gradient descent

VoV(Gy, Dy) = V'Y log(1 — Dy(Gy(z")))
i=1

o Update the discriminator parameters ¢ by stochastic gradient ascent

Ve V(Gy, Dy) = %v(ﬁ > “llog Dy(x7) + log(1 — Dy(Gy(z(")))]
i=1

@ Repeat for fixed number of epochs
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Summary of GAN Models

@ GAN Pros:
e Very high-quality samples.
e Can optimize a wide range of divergences between probabilities (next
lecture)
o Broadly applicable: only need sampling from G!

@ GAN Cons:

e Only works for continuous variables
o Difficult to train
o Suffers from mode collapse
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Optimization challenges

e Theorem (informal): If the generator updates are made in function
space and discriminator is optimal at every step, then the generator is
guaranteed to converge to the data distribution

@ Unrealistic assumptions!

@ In practice, the generator and discriminator loss keeps oscillating
during GAN training
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Figure: *

Source: Mirantha Jayathilaka
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Low Dimensional Support

@ Images are a small subset of all possible n x n matrices. They
represent a small subset of R™*",

@ Similarly, the manifold of outputs from the generator is also small.

@ Hence, their intersection is small (Arjofsky and Bottou, 2017).
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Vanishing gradients

@ Recall that the GAN objective is
V(G, D) = Exwpyuallog D(x)] + Ex~pcllog(l — D(x))]
@ When discriminator is overconfident, second term is small and has
vanishing grads.

Gradient of the generator with the original cost

—  After 1 epoch
—— After 10 epochs
—— After 25 epochs

[V6L(D. )|

0 - — - -
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Training iterations.

@ This can happen when the manifolds are disjoint.
@ A lot of tricks to address this: change the objective, constrain the
power of the GAN, add noise, etc.
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Mode Collapse

@ GANs are notorious for suffering from mode collapse

o Intuitively, this refers to the phenomena where the generator of a
GAN collapses to one or few samples (dubbed as “modes”)

Arjovsky et al., 2017
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Mode Collapse

Target

@ True distribution is a mixture of Gaussians

Step 0 Step 5k Step 10k Step 15k Step 20k
Source: Metzetal., 2017

@ The generator distribution keeps oscillating between different modes
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Mode Collapse

PRBRE TR W
TR R R W
PERRRRRER
IR R LRSS

i
Iy
I
EEE
P
P
P
éiE

il oo v L ub b b bbb

IARANARANANANANA!
IARANANANARANANA
IARNANANANARANANA
IARNANANANAR AN ANA
IARNANANANANANANAL
ARANARANANANANA!
IANANANANARANANA
20k steps

blb b b b b b b &

Lbbbbbb6L
bbbbbbbb
bbbbbbb b
bbbbbbbb
bbbbbbbb
Lbbbbbb b
b bbb b bbb
100k steps

Source: Metzetal., 2017

o Fixes to mode collapse are mostly empirically driven:

o Alternate architectures

Volodymyr Kuleshov (Cornell Tech)

Feature matching: Exp,,..[log F(x)] —
Label Smoothing: D outputs numbers close but # to 0, 1.
Adding noise to data: make the manifolds closer to each other.
Evaluation criteria based on heuristics and pre-trained vision models.
Better metrics of distribution similarity!

Deep Generative Models

Expe[(F(x)]
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Beyond KL and Jenson-Shannon Divergence

d(Pgatar Pjg)

Pdata

Xi~Pgata bem

i=12,..,n
What choices do we have for d(-)?

o KL divergence: Autoregressive Models, Flow models

Model family

o (scaled and shifted) Jenson-Shannon divergence: original GAN
objective
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Jenson-Shannon Divergence

@ Also called as the symmetric KL divergence
+q +
DJSD[p7 q] (DKL |:p7 P 2 :| + D |: pzq:|>

@ Properties

o Dsp[p,q] >0

o Dysplp,q] =0iff p=gq

o Dysplp, q] = Dysolg, p]

o \/Dysp[p, q] satisfies triangle inequality — Jenson-Shannon Distance

e Optimal generator for the JSD/Negative Cross Entropy GAN

PG = Pdata

@ For the optimal discriminator D{.(-) and generator G*(-), we have
V(G*, Dg«(x)) = —log4
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Jenson-Shannon Divergence

The Jenson-Shannon divergence is mode-seeking.

o Consider a multi-modal data distribution that we are trying to
approximating with a uni-model estimator.

Data KLD MMD JSD

e The KL divergence (log-likelihood objective) tries to average both
modes. The JSD objective favors fitting one mode well. Recall:

D(Paatal|Po) = Ex~p,,,. [Iog (F)'(li%t(ai;))] = ; Pdata(x) log P;d;,j(a)g()
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@ Given two densities p and g, the f-divergence is given by

010,01~ 5[ (23]

where f is any convex, lower-semicontinuous function with (1) = 0.
@ Convex: Line joining any two points lies above the function

@ Lower-semicontinuous: function value at any point xq is close to
f(xo0) or greater than f(xg)
A

. ,

X, \
e Example: KL divergence with f(u) = ulogu

Volodymyr Kuleshov (Cornell Tech)
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f divergences

Many more f-divergences!

Name Dy(P|Q) Generator f(u)
Total variation 3 [p(z) — ()| dz dlu—1]
Kullback-Leibler J p(z)log "—H dz ulogu
Reverse Kullback-Leibler [ g(z log ( ) —logu
Pearson x? I M dz (u—1)2
Neyman x? I L&)#—D— dz Llu—“)g
Squared Hellinger (\/_.'t - \/q(_;r)2 dz (Vu-— l)2
Jeffrey [ (o(z) — q(z)) log (J—l) de (u—1)logu

Jensen-Shannon
Jensen-Shannon-weighted
GAN

a-divergence (a ¢ {0,1})

5 [p(z) logﬁgﬁﬁ(z+q(z)logyI tarm 4z

Jn( z)wlugm + (1 = m)a(z)log 7 (l;=lq<rl dz
fp(z) log %;)(7 +q(x) log 5345 dz — log(4)

= [ (¢@ [(23)" - 1] - ale@) - p(a))) do

—(u+1)log 1% +ulogu
mulogu — (1 - m + mu)log(l — 7 + wu)
ulogu — (u+ 1)log(u+1)
ﬁ(u”—l—a(u—l))
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f-GAN: Variational Divergence Minimization

@ To use f-divergences as a two-sample test objective for likelihood-free
learning, we need to be able to estimate it only via samples

@ Fenchel conjugate: For any function f(-), its convex conjugate is

defined as

Volodymyr Kuleshov (Cornell Tech)

= sup (ut—f(u))

uedomys

4 (_y’ 1)

f(=)

inf {f(z) -2y} =—f*(y)

rERM
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f-GAN: Variational Divergence Minimization

@ To use f-divergences as a two-sample test objective for likelihood-free
learning, we need to be able to estimate it only via samples
@ Duality: f** = f. When f(-) is convex, lower semicontinous, so is
()
f(u)= sup (tu—fF*(1))

tedomyx

e Example: KL divergence with f(u) = ulogu
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f-GAN: Variational Divergence Minimization

@ We can obtain a lower bound to any f-divergence via its Fenchel
conjugate

Dr(p. ) = Eva | (563

= Exq {SUptedomf* < (x) *(t))}

= Jasuprer (T(X)p(x) — £*(T(x))a(x)) dx
> suprer [x(T(x)p(x) — £*(T(x))q(x))dx
= suprer (Bxmp [T(X)] = Exng [F*(T(x)))])

where 7 : X — R is an arbitrary class of functions

@ Note: Lower bound is likelihood-free w.r.t. p and g
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f-GAN: Variational Divergence Minimization

@ Variational lower bound

Df(p,q) = sup (Exp [T(X)] = Exng [F*(T(x)))])
TeT

Choose any f-divergence

°
© Let p = pgata and g = pg

@ Parameterize T by ¢ and G by 6

@ Consider the following f-GAN objective

mein mq?x F(ev ¢) = EXNPdata [T¢(X)] - EXNPGG [f*(T¢(X)))]

@ Generator Gy tries to minimize the divergence estimate and
discriminator T tries to tighten the lower bound
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Inferring latent representations in GANs

@ The generator of a GAN is typically a directed, latent variable model
with latent variables z and observed variables x How can we infer the
latent feature representations in a GAN?

@ Unlike a normalizing flow model, the mapping G : z — x need not be
invertible

@ Unlike a variational autoencoder, there is no inference network q(-)
which can learn a variational posterior over latent variables

@ Solution 1: For any point x, use the activations of the prefinal layer
of a discriminator as a feature representation

@ Intuition: Similar to supervised deep neural networks, the
discriminator would have learned useful representations for x while
distinguishing real and fake x
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Inferring latent representations in GANs

o If we want to directly infer the latent variables z of the generator, we
need a different learning algorithm

@ A regular GAN optimizes a two-sample test objective that compares
samples of x from the generator and the data distribution

@ Solution 2: To infer latent representations, we will compare samples
of x,z from the joint distributions of observed and latent variables as
per the model and the data distribution

@ For any x generated via the model, we have access to z (sampled
from a simple prior p(z))

@ For any x from the data distribution, the z is however unobserved
(latent)
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Bidirectional Generative Adversarial Networks (BiGAN)

features data

>

G(z), z

X, E(x) p @
E(x) E } ‘

@ In a BiGAN, we have an encoder network E in addition to the
generator network G

@ The encoder network only observes x ~ pgata(x) during training to
learn a mapping E : x— z

@ As before, the generator network only observes the samples from the
prior z ~ p(z) during training to learn a mapping G : z > x
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Bidirectional Generative Adversarial Networks (BiGAN)

features data

>R .. .
R =

@ The discriminator D observes samples from the generative model
z, G(z) and the encoding distribution E(x), x

@ The goal of the discriminator is to maximize the two-sample test
objective between z, G(z) and E(x),x

@ After training is complete, new samples are generated via G and
latent representations are inferred via E
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Translating across domains

@ Image-to-image translation: We are given images from two domains,

X and Y

@ Paired vs. unpaired examples

T

Paired Unpaired
Yi Y

Source: Zhu et al., 2016

@ Paired examples can be expensive to obtain. Can we translate from
X <> Y in an unsupervised manner?

Volodymyr Kuleshov (Cornell Tech)
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CycleGAN: Adversarial training across two domains

@ To match the two distributions, we learn two parameterized
conditional generative models G : X —+ Y and F: )Y — X

@ G maps an element of X" to an element of ). A discriminator Dy
compares the observed dataset Y and the generated samples
Y = G(X)

@ Similarly, F maps an element of ) to an element of X. A
discriminator Dy compares the observed dataset X and the generated
samples X = F(Y)

7 N\
~

Source: Zhu et al., 2016
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CycleGAN: Cycle consistency across domains

@ Cycle consistency: If we can go from X to Y via G, then it should
also be possible to go from Y back to X via F

o F(G(X)) ~ X

o Similarly, vice versa: G(F(Y)) =Y

e = a
AN alnH

X

cycle-consistency N _..-\

oss

./

O

Y X Y

cycle-consistency
:——*.\ L oss

@ Overall loss function

Source: Zhu et al., 2016

min ﬁGAN(G,Dy,X, Y)+EGAN(F, Dx,X, Y)

F,G,Dx,Dy

FAEXIF600) — X[l + Ev[IG(F(Y)) — YiRl)
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cycle consistency
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CycleGAN in practice

Monet T Photos Zebras Horses Summer _ Winter

horse — zebra

Cezanne

Photograph
Source: Zhu et al., 2016
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CycleGAN in practice

CycleGANs can also be applied to movies.
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CycleGAN in practice

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 10 31/35



CycleGAN in practice
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AlignFlow

Gaoz =Gzl Gpoyz =Gzl

Gasn
Ca Gy Ci Ca Ca
(a) CycleGAN (b) AlignFlow

Figure 1: CycleGAN v.s. AlignFlow for unpaired cross-domain translation. Unlike CycleGAN,
AlignFlow specifies a single invertible mapping Ga_,z © Ggiz that is exactly cycle-consistent,
represents a shared latent space Z between the two domains, and can be trained via both adversarial
training and exact maximum likelihood estimation. Double-headed arrows denote invertible mappings.
Y and Yp are random variables denoting the output of the critics used for adversarial training.

o What if G is a flow model?
@ No need to parameterize F separately! F = G~1
e Can train via MLE and/or adversarial learning!

@ Exactly cycle-consistent
F(G(X)) = X
G(F(Y)) =Y
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Summary of GAN Models

@ GAN Pros:
e Very high-quality samples.
e Can optimize a wide range of divergences between probabilities (next
lecture)
o Broadly applicable: only need sampling from G!

@ GAN Cons:

e Only works for continuous variables
o Difficult to train
o Suffers from mode collapse
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Summary of Generative Adversarial Networks

o Key observation: Samples and likelihoods are not correlated in
practice

@ Two-sample test objectives allow for learning generative models only
via samples (likelihood-free)

e Wide range of two-sample test objectives covering f-divergences (and
more)

@ Latent representations can be inferred via BiGAN

@ Cycle-consistent domain translations via CycleGAN and AlignFlow
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