Generative Adversarial Networks

Volodymyr Kuleshov

Cornell Tech

Lecture 10

- Project proposal due tonight
 - Submit on Gradescope.
 - Can submit as a team.
- Working on resolving presentation slots

- Optimization Issues in GANs
- Optimization of f-Divergences
- Iatent Variable Modeling in GANs
- Oomain Translation

Generative Adversarial Networks: Recap

• A two player minimax game between a **generator** and a **discriminator**

• Generator

- Directed, latent variable model with a deterministic mapping between z and x given by G_{θ}
- Minimizes a two-sample test objective (in support of the null hypothesis $p_{\rm data} = p_{\theta}$)

Discriminator

- Any function (e.g., neural network) which tries to distinguish "real" samples from the dataset and "fake" samples generated from the model
- Maximizes the two-sample test objective (in support of the alternate hypothesis $p_{\rm data}
 eq p_{ heta}$)

The GAN training algorithm

- Sample minibatch of *m* training points $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(m)}$ from \mathcal{D}
- Sample minibatch of *m* noise vectors $\mathbf{z}^{(1)}, \mathbf{z}^{(2)}, \dots, \mathbf{z}^{(m)}$ from p_z
- Update the generator parameters θ by stochastic gradient **descent**

$$abla_{ heta} V(G_{ heta}, D_{\phi}) = rac{1}{m}
abla_{ heta} \sum_{i=1}^m \log(1 - D_{\phi}(G_{ heta}(\mathbf{z}^{(i)})))$$

• Update the discriminator parameters ϕ by stochastic gradient **ascent**

$$abla_{\phi} V(G_{ heta}, D_{\phi}) = rac{1}{m}
abla_{\phi} \sum_{i=1}^{m} [\log D_{\phi}(\mathbf{x}^{(i)}) + \log(1 - D_{\phi}(G_{ heta}(\mathbf{z}^{(i)})))]$$

Repeat for fixed number of epochs

• GAN Pros:

- Very high-quality samples.
- Can optimize a wide range of divergences between probabilities (next lecture)
- Broadly applicable: only need sampling from G!

• GAN Cons:

- Only works for continuous variables
- Difficult to train
- Suffers from mode collapse

Optimization challenges

- **Theorem (informal):** If the generator updates are made in function space and discriminator is optimal at every step, then the generator is guaranteed to converge to the data distribution
- Unrealistic assumptions!
- In practice, the generator and discriminator loss keeps oscillating during GAN training

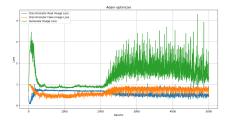
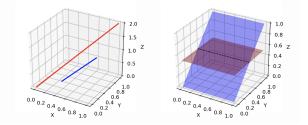


Figure: *

Source: Mirantha Jayathilaka

- Images are a small subset of all possible $n \times n$ matrices. They represent a small subset of $\mathbb{R}^{n \times n}$.
- Similarly, the manifold of outputs from the generator is also small.



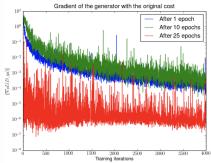
• Hence, their intersection is small (Arjofsky and Bottou, 2017).

Vanishing gradients

• Recall that the GAN objective is

$$\mathcal{V}(G,D) = E_{\mathbf{x} \sim p_{\text{data}}}[\log D(\mathbf{x})] + E_{\mathbf{x} \sim p_G}[\log(1 - D(\mathbf{x}))]$$

• When discriminator is overconfident, second term is small and has vanishing grads.

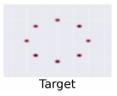


- This can happen when the manifolds are disjoint.
- A lot of tricks to address this: change the objective, constrain the power of the GAN, add noise, etc.

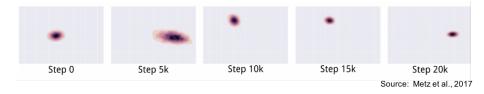
Volodymyr Kuleshov (Cornell Tech)

- GANs are notorious for suffering from mode collapse
- Intuitively, this refers to the phenomena where the generator of a GAN collapses to one or few samples (dubbed as "modes")

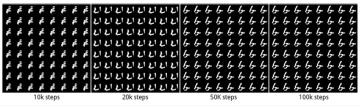
Arjovsky et al., 2017



• True distribution is a mixture of Gaussians



• The generator distribution keeps oscillating between different modes



Source: Metz et al., 2017

• Fixes to mode collapse are mostly empirically driven:

- Alternate architectures
- Feature matching: $E_{\mathbf{x} \sim p_{data}}[\log F(\mathbf{x})] E_{\mathbf{x} \sim p_G}[(F(\mathbf{x})]]$
- Label Smoothing: D outputs numbers close but \neq to 0, 1.
- Adding noise to data: make the manifolds closer to each other.
- Evaluation criteria based on heuristics and pre-trained vision models.
- Better metrics of distribution similarity!

Beyond KL and Jenson-Shannon Divergence

What choices do we have for $d(\cdot)$?

- KL divergence: Autoregressive Models, Flow models
- (scaled and shifted) Jenson-Shannon divergence: original GAN objective

Jenson-Shannon Divergence

• Also called as the symmetric KL divergence

$$D_{JSD}[p,q] = rac{1}{2} \left(D_{KL}\left[p,rac{p+q}{2}
ight] + D_{KL}\left[q,rac{p+q}{2}
ight]
ight)$$

- Properties
 - $D_{JSD}[p,q] \geq 0$
 - $D_{JSD}[p,q] = 0$ iff p = q
 - $D_{JSD}[p,q] = D_{JSD}[q,p]$
 - $\sqrt{D_{JSD}[p,q]}$ satisfies triangle inequality ightarrow Jenson-Shannon Distance
- Optimal generator for the JSD/Negative Cross Entropy GAN

$$p_G = p_{\text{data}}$$

• For the optimal discriminator $D^*_{G^*}(\cdot)$ and generator $G^*(\cdot)$, we have

$$V(G^*, D^*_{G^*}(\mathbf{x})) = -\log 4$$

Jenson-Shannon Divergence

The Jenson-Shannon divergence is mode-seeking.

• Consider a multi-modal data distribution that we are trying to approximating with a uni-model estimator.



• The KL divergence (log-likelihood objective) tries to average both modes. The JSD objective favors fitting one mode well. Recall:

$$\mathbf{D}(P_{\text{data}}||P_{\theta}) = \mathbf{E}_{\mathbf{x} \sim P_{\text{data}}} \left[\log \left(\frac{P_{\text{data}}(\mathbf{x})}{P_{\theta}(\mathbf{x})} \right) \right] = \sum_{\mathbf{x}} P_{\text{data}}(\mathbf{x}) \log \frac{P_{\text{data}}(\mathbf{x})}{P_{\theta}(\mathbf{x})}$$

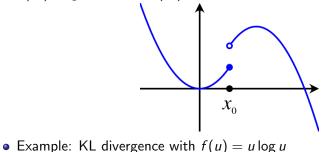
f divergences

• Given two densities p and q, the f-divergence is given by

$$D_f(p,q) = E_{\mathbf{x} \sim q} \left[f\left(\frac{p(\mathbf{x})}{q(\mathbf{x})} \right) \right]$$

where f is any convex, lower-semicontinuous function with f(1) = 0.

- Convex: Line joining any two points lies above the function
- Lower-semicontinuous: function value at any point x₀ is close to f(x₀) or greater than f(x₀)



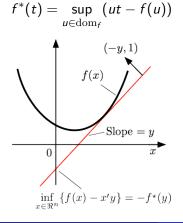
Many more f-divergences!

Name	$D_f(P\ Q)$	Generator $f(u)$
Total variation	$rac{1}{2}\int p(x)-q(x) \mathrm{d}x$	$\frac{1}{2} u-1 $
Kullback-Leibler	$\int p(x) \log \frac{p(x)}{q(x)} dx$	$u \log u$
Reverse Kullback-Leibler	$\int q(x) \log \frac{q(x)}{p(x)} dx$	$-\log u$
Pearson χ^2	$\int \frac{(q(x)-p(x))^2}{p(x)} dx$	$(u-1)^2$
Neyman χ^2	$\int \frac{(p(x)-q(x))^2}{q(x)} \mathrm{d}x$	$\frac{(1-u)^2}{u}$
Squared Hellinger	$\int \left(\sqrt{p(x)} - \sqrt{q(x)}\right)^2 dx$	$(\sqrt{u} - 1)^2$
Jeffrey	$\int (p(x) - q(x)) \log \left(\frac{p(x)}{q(x)} \right) dx$	$(u-1)\log u$
Jensen-Shannon	$rac{1}{2}\int p(x)\lograc{2p(x)}{p(x)+q(x)}+q(x)\lograc{2q(x)}{p(x)+q(x)}\mathrm{d}x$	$-(u+1)\log \frac{1+u}{2} + u\log u$
Jensen-Shannon-weighted	$\int p(x)\pi \log \frac{p(x)}{\pi p(x) + (1-\pi)q(x)} + (1-\pi)q(x) \log \frac{q(x)}{\pi p(x) + (1-\pi)q(x)} dx$	$\pi u \log u - (1-\pi+\pi u) \log(1-\pi+\pi u)$
GAN	$ \int p(x)\pi \log \frac{p(x)}{\pi p(x) + (1 - \pi)q(x)} + (1 - \pi)q(x) \log \frac{q(x)}{\pi p(x) + (1 - \pi)q(x)} dx \\ \int p(x) \log \frac{2p(x)}{p(x) + q(x)} + q(x) \log \frac{2q(x)}{p(x) + q(x)} dx - \log(4) $	$u\log u - (u+1)\log(u+1)$
$\alpha \text{-divergence} \ (\alpha \notin \{0,1\})$		$rac{1}{lpha(lpha-1)}\left(u^lpha-1-lpha(u-1) ight)$

Source: Nowozin et al., 2016

f-GAN: Variational Divergence Minimization

- To use *f*-divergences as a two-sample test objective for likelihood-free learning, we need to be able to estimate it only via samples
- Fenchel conjugate: For any function $f(\cdot)$, its convex conjugate is defined as



- To use *f*-divergences as a two-sample test objective for likelihood-free learning, we need to be able to estimate it only via samples
- Duality: $f^{**} = f$. When $f(\cdot)$ is convex, lower semicontinous, so is $f^*(\cdot)$

$$f(u) = \sup_{t \in \mathrm{dom}_{f^*}} (tu - f^*(t))$$

• Example: KL divergence with $f(u) = u \log u$

f-GAN: Variational Divergence Minimization

• We can obtain a lower bound to any *f*-divergence via its Fenchel conjugate

$$D_{f}(p,q) = E_{\mathbf{x}\sim q} \left[f\left(\frac{p(\mathbf{x})}{q(\mathbf{x})}\right) \right]$$

= $E_{\mathbf{x}\sim q} \left[\sup_{t\in \text{dom}_{f^{*}}} \left(t\frac{p(\mathbf{x})}{q(\mathbf{x})} - f^{*}(t) \right) \right]$
= $\int_{\mathcal{X}} \sup_{T\in\mathcal{T}} \left(T(\mathbf{x})p(\mathbf{x}) - f^{*}(T(\mathbf{x}))q(\mathbf{x}) \right) d\mathbf{x}$
 $\geq \sup_{T\in\mathcal{T}} \int_{\mathcal{X}} (T(\mathbf{x})p(\mathbf{x}) - f^{*}(T(\mathbf{x}))q(\mathbf{x})) d\mathbf{x}$
= $\sup_{T\in\mathcal{T}} \left(E_{\mathbf{x}\sim p} \left[T(\mathbf{x}) \right] - E_{\mathbf{x}\sim q} \left[f^{*}(T(\mathbf{x})) \right] \right)$

where $\mathcal{T} : \mathcal{X} \mapsto \mathbb{R}$ is an arbitrary class of functions • **Note:** Lower bound is likelihood-free w.r.t. *p* and *q*

f-GAN: Variational Divergence Minimization

Variational lower bound

$$D_f(p,q) \geq \sup_{T \in \mathcal{T}} \left(E_{\mathbf{x} \sim p} \left[T(\mathbf{x}) \right] - E_{\mathbf{x} \sim q} \left[f^*(T(\mathbf{x})) \right] \right)$$

- Choose any *f*-divergence
- Let $p = p_{data}$ and $q = p_G$
- Parameterize T by ϕ and G by θ
- Consider the following *f*-GAN objective

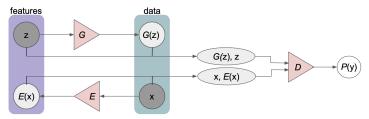
$$\min_{\theta} \max_{\phi} F(\theta, \phi) = E_{\mathbf{x} \sim p_{\mathsf{data}}} \left[T_{\phi}(\mathbf{x}) \right] - E_{\mathbf{x} \sim p_{G_{\theta}}} \left[f^{*}(T_{\phi}(\mathbf{x})) \right]$$

 Generator G_θ tries to minimize the divergence estimate and discriminator T_φ tries to tighten the lower bound

- The generator of a GAN is typically a directed, latent variable model with latent variables z and observed variables x How can we infer the latent feature representations in a GAN?
- Unlike a normalizing flow model, the mapping G : z → x need not be invertible
- Unlike a variational autoencoder, there is no inference network $q(\cdot)$ which can learn a variational posterior over latent variables
- **Solution 1**: For any point **x**, use the activations of the prefinal layer of a discriminator as a feature representation
- Intuition: Similar to supervised deep neural networks, the discriminator would have learned useful representations for x while distinguishing real and fake x

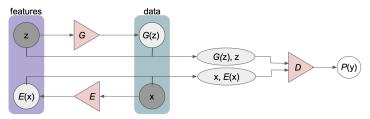
- If we want to directly infer the latent variables z of the generator, we need a different learning algorithm
- A regular GAN optimizes a two-sample test objective that compares samples of **x** from the generator and the data distribution
- Solution 2: To infer latent representations, we will compare samples of x, z from the joint distributions of observed and latent variables as per the model and the data distribution
- For any x generated via the model, we have access to z (sampled from a simple prior p(z))
- For any **x** from the data distribution, the **z** is however unobserved (latent)

Bidirectional Generative Adversarial Networks (BiGAN)



- In a BiGAN, we have an encoder network *E* in addition to the generator network *G*
- The encoder network only observes x ~ p_{data}(x) during training to learn a mapping E : x → z
- As before, the generator network only observes the samples from the prior z ~ p(z) during training to learn a mapping G : z → x

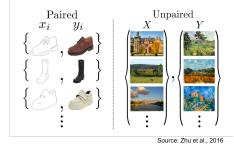
Bidirectional Generative Adversarial Networks (BiGAN)



- The discriminator D observes samples from the generative model
 z, G(z) and the encoding distribution E(x), x
- The goal of the discriminator is to maximize the two-sample test objective between z, G(z) and E(x), x
- After training is complete, new samples are generated via G and latent representations are inferred via E

Translating across domains

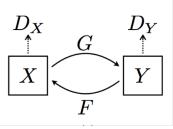
- \bullet Image-to-image translation: We are given images from two domains, ${\cal X}$ and ${\cal Y}$
- Paired vs. unpaired examples



• Paired examples can be expensive to obtain. Can we translate from $\mathcal{X} \leftrightarrow \mathcal{Y}$ in an unsupervised manner?

CycleGAN: Adversarial training across two domains

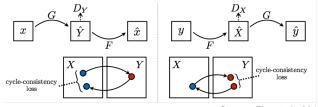
- To match the two distributions, we learn two parameterized conditional generative models G : X → Y and F : Y → X
- G maps an element of X to an element of Y. A discriminator D_Y compares the observed dataset Y and the generated samples Ŷ = G(X)
- Similarly, F maps an element of Y to an element of X. A discriminator D_X compares the observed dataset X and the generated samples X̂ = F(Y)



Source: Zhu et al., 2016

CycleGAN: Cycle consistency across domains

- Cycle consistency: If we can go from X to \hat{Y} via G, then it should also be possible to go from \hat{Y} back to X via F
 - $F(G(X)) \approx X$
 - Similarly, vice versa: $G(F(Y)) \approx Y$



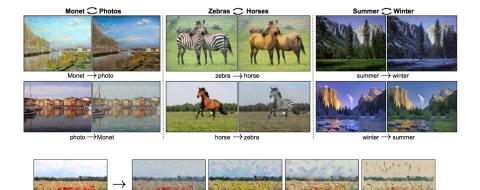
Source: Zhu et al., 2016

Overall loss function

 $\min_{F,G,D_{\mathcal{X}},D_{\mathcal{Y}}} \mathcal{L}_{GAN}(G,D_{\mathcal{Y}},X,Y) + \mathcal{L}_{GAN}(F,D_{\mathcal{X}},X,Y) + \lambda \underbrace{(E_X[\|F(G(X)) - X\|_1] + E_Y[\|G(F(Y)) - Y\|_1])}_{(E_X[\|F(G(X)) - X\|_1] + E_Y[\|G(F(Y)) - Y\|_1])}$

cycle consistency

CycleGAN in practice



Photograph

Van Gogh

Monet

Cezanne

Ukiyo-e

Source: Zhu et al., 2016

CycleGANs can also be applied to movies.

CycleGAN in practice

CycleGAN in practice

AlignFlow

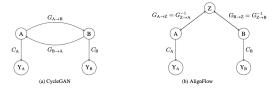


Figure 1: CycleGAN v.s. AlignFlow for unpaired cross-domain translation. Unlike CycleGAN, AlignFlow specifies a single invertible mapping $G_{A \to Z} \circ G_{B \to Z}^{-1}$ that is exactly cycle-consistent, represents a shared latent space Z between the two domains, and can be trained via both adversarial training and exact maximum likelihood estimation. Double-headed arrows denote invertible mappings. Y_A and Y_B are random variables denoting the output of the critics used for adversarial training.

- What if G is a flow model?
- No need to parameterize F separately! $F = G^{-1}$
- Can train via MLE and/or adversarial learning!
- Exactly cycle-consistent

 $\begin{array}{l} \mathsf{F}(\mathsf{G}(\mathsf{X})) = \mathsf{X} \\ \mathsf{G}(\mathsf{F}(\mathsf{Y})) = \mathsf{Y} \end{array}$

• GAN Pros:

- Very high-quality samples.
- Can optimize a wide range of divergences between probabilities (next lecture)
- Broadly applicable: only need sampling from G!

• GAN Cons:

- Only works for continuous variables
- Difficult to train
- Suffers from mode collapse

- Key observation: Samples and likelihoods are not correlated in practice
- Two-sample test objectives allow for learning generative models only via samples (likelihood-free)
- Wide range of two-sample test objectives covering *f*-divergences (and more)
- Latent representations can be inferred via BiGAN
- Cycle-consistent domain translations via CycleGAN and AlignFlow