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Announcements

Assignment 2 is due at midnight today!

If submitting late, please mark it as such.

Submit Assignment 2 via Gradescope. The code is M45WYY.

Submit your pdf assignment as a photo/pdf
Submit your programming assignment as a zip file

Sent out emails to resolve issues with presentation slots.
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Summary

Story so far

Representation: Latent variable vs. fully observed

Objective function and optimization algorithm: Many divergences and
distances optimized via likelihood-free (two sample test) or likelihood
based methods

Plan for today: Normalized vs. Energy based models
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Lecture Outline

1 Energy-Based Models

Motivation
Definitions
Exponential Families

2 Representation

Motivating Applications
Ising Models
Product of Experts
Restricted Boltzmann Machines
Deep Boltzmann Machines

3 Learning

Likelihood-based learning
Markov Chain Monte Carlo
(Persistent) Contrastive Divergence
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Parameterizing probability distributions

Probability distributions p(x) are a key building block in generative
modeling. Properties:

1 non-negative: p(x) ≥ 0

2 sum-to-one:
∑

x p(x) = 1 (or
∫
p(x)dx = 1 for continuous variables)

Sum-to-one is key:

Total “volume” is fixed: increasing p(xtrain) guarantees that xtrain becomes
relatively more likely (compared to the rest).
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Parameterizing probability distributions

Probability distributions p(x) are a key building block in generative
modeling. Properties:

1 non-negative: p(x) ≥ 0

2 sum-to-one:
∑

x p(x) = 1 (or
∫
p(x)dx = 1 for continuous variables)

Coming up with a non-negative function pθ(x) is not hard. For example:

gθ(x) = fθ(x)2 where fθ is any neural network

gθ(x) = exp(fθ(x)) where fθ is any neural network

· · ·
Problem: gθ(x) ≥ 0 is easy, but gθ(x) might not sum-to-one.∑

x gθ(x) = Z (θ) 6= 1 in general, so gθ(x) is not a valid probability mass
function or density
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Parameterizing probability distributions

Problem: gθ(x) ≥ 0 is easy, but gθ(x) might not be normalized
Solution:

pθ(x) =
1

Volume(gθ)
gθ(x) =

1∫
gθ(x)dx

gθ(x)

Then by definition,
∫
pθ(x)dx = 1. Typically, choose gθ(x) so that we know the

volume analytically as a function of θ. For example,

1 g(µ,σ)(x) = e−
(x−µ)2

2σ2 . Volume is:
∫
e−

x−µ

2σ2 dx =
√

2πσ2 → Gaussian

2 gλ(x) = e−λx . Volume is:
∫ +∞
0

e−λxdx = 1
λ . → Exponential

3 Etc.

We can only choose functional forms gθ(x) that we can integrate analytically.
This is very restrictive, but as we have seen, they are very useful as building
blocks for more complex models (e.g., conditionals in autoregressive models)
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Parameterizing probability distributions

Problem: gθ(x) ≥ 0 is easy, but gθ(x) might not be normalized
Solution:

pθ(x) =
1

Volume(gθ)
gθ(x) =

1∫
gθ(x)dx

gθ(x)

Typically, choose gθ(x) so that we know the volume analytically. More complex
models can be obtained by combining these building blocks. Main strategies:

1 Autoregressive: Products of normalized objects pθ(x)pθ′(x)(y):∫
x

∫
y
pθ(x)pθ′(x)(y)dxdy =

∫
x
pθ(x)

∫
y

pθ′(x)(y)dy︸ ︷︷ ︸
=1

dx =
∫
x
pθ(x)dx = 1

2 Latent variables: Mixtures of normalized objects αpθ(x) + (1− α)pθ′(x) :∫
x
αpθ(x) + (1− α)pθ′(x)dx = α + (1− α) = 1

3 Flows: Construct p via bijection and track volume change.

How about using models where the “volume”/normalization constant is not easy
to compute analytically?
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Energy based model

pθ(x) =
1∫

exp(fθ(x))dx
exp(fθ(x)) =

1

Z (θ)
exp(fθ(x))

The volume/normalization constant

Z (θ) =

∫
exp(fθ(x))dx

is also called the partition function. Why exponential (and not e.g. fθ(x)2)?

1 Want to capture very large variations in probability. log-probability is the
natural scale we want to work with. Otherwise need highly non-smooth fθ.

2 Exponential families. Many common distributions can be written in this
form.

3 These distributions arise under fairly general assumptions in statistical
physics (maximum entropy, second law of thermodynamics). −fθ(x) is called
the energy, hence the name. Intuitively, configurations x with low energy
(high fθ(x)) are more likely.

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 11 9 / 37



Energy based model

pθ(x) =
1∫

exp(fθ(x))dx
exp(fθ(x)) =

1

Z (θ)
exp(fθ(x))

Pros:

1 extreme flexibility: can use pretty much any function fθ(x) you want

Cons (lots of them):

1 Sampling from pθ(x) is hard

2 Evaluating and optimizing likelihood pθ(x) is hard (learning is hard)

3 No feature learning (but can add latent variables)

Curse of dimensionality: The fundamental issue is that computing Z (θ)
numerically (when no analytic solution is available) scales exponentially in
the number of dimensions of x. Nevertheless, some tasks do not require
knowing Z (θ)
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Exponential family models

Energy based models are closely related to exponential family models, such as:

p(x ; θ) =
exp(θT f (x))

Z (θ)
.

Exponential families are

Log-concave in their natural parameters θ. The partition function Z (θ) is
also log-convex in θ.

The vector f (x) is called the vector of sufficient statistics; these fully
describe the distribution p; e.g. if p is Gaussian, θ contains (simple
reparametrizations of) the mean and the variance of p.

Maximizing the entropy H(p) under the constraint Ep[f (x)] = α (i.e. the
sufficient statistics equal some value α) is an ExpFam.

Example: Gaussian: f (x) = (x , x2), θ = ( µσ2 ,
−1
2σ2 ).
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Applications of Energy based models

pθ(x) =
1∫

exp(fθ(x))dx
exp(fθ(x)) =

1

Z (θ)
exp(fθ(x))

Given x, x′ evaluating pθ(x) or pθ(x′) requires Z (θ). However, their ratio

pθ(x)

pθ(x′)
= exp(fθ(x)− fθ(x′))

does not involve Z (θ). This means we can easily check which one is more likely.
Applications:

1 anomaly detection

2 denoising
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Applications of Energy based models

E(Y, X)

X Y

E(Y, X)

X Y

E(Y, X)

X Y

cat

object recognition sequence labeling image restoration

“class” noun

Given a trained model, many applications require relative comparisons. Hence
Z (θ) is not needed.
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Example: Ising Model

There is a true image y ∈ {0, 1}3×3, and a corrupted image x ∈ {0, 1}3×3.
We know x, and want to somehow recover y.

Y1

X1

Y2

X2

Y3

X3

Y7

X7

Y4

X4

Y5

X5

Y6

X6

Y8

X8

Y9

X9

Xi: noisy pixels
Yi: “true” pixels

Markov Random Field

We model the joint probability distribution p(y, x) as

p(y, x) =
1

Z
exp

∑
i

ψi (xi , yi ) +
∑

(i,j)∈E

ψij (yi , yj )


ψi (xi , yi ): the i-th corrupted pixel depends on the i-th original pixel
ψij(yi , yj): neighboring pixels tend to have the same value

How did the original image y look like? Solution: maximize p(y|x)
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Example: Product of Experts

Suppose you have trained several models qθ1(x), rθ2(x), tθ3(x). They
can be different models (PixelCNN, Flow, etc.)

Each one is like an expert that can be used to score how likely an
input x is.

Assuming the experts make their judgments indpendently, it is
tempting to ensemble them as

pθ1(x)qθ2(x)rθ3(x)

To get a valid probability distribution, we need to normalize

pθ1,θ2,θ3(x) =
1

Z (θ1, θ2, θ3)
qθ1(x)rθ2(x)tθ3(x)

Note: similar to an AND operation (e.g., probability is zero as long as
one model gives zero probability), unlike mixture models which
behave more like OR
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Example: Restricted Boltzmann machine (RBM)

RBM: energy-based model with latent variables

Two types of variables:
1 x ∈ {0, 1}n are visible variables (e.g., pixel values)
2 z ∈ {0, 1}m are latent ones

The joint distribution is

pW ,b,c(x, z) =
1

Z
exp

(
xTW z+ bx+ cz

)
=

1

Z
exp

(
n∑

i=1

m∑
j=1

xizjwij + bx+ cz

)

Visible units

Hidden units

Restricted because there are no visible-visible and hidden-hidden
connections, i.e., xixj or zizj terms in the objective
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Deep Boltzmann Machines

Stacked RBMs are one of the first deep generative models:

Deep Boltzmann machine

v

h(3)

h(2)

h(1)

W(3)

W(2)

W(1)

Bottom layer variables v are pixel values. Layers above (h) represent
“higher-level” features (corners, edges, etc). Early deep neural networks
for supervised learning had to be pre-trained like this to make them work.
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Boltzmann Machines: samples

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 11 19 / 37



Lecture Outline

1 Energy-Based Models

Motivation
Definitions
Exponential Families

2 Representation

Motivating Applications
Ising Models
Product of Experts
Restricted Boltzmann Machines
Deep Boltzmann Machines

3 Learning
Likelihood-based learning
Markov Chain Monte Carlo
(Persistent) Contrastive Divergence

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 11 20 / 37



Energy based models: learning and inference

pθ(x) =
1∫

exp(fθ(x))
exp(fθ(x)) =

1

Z (θ)
exp(fθ(x))

Pros:

1 can plug in pretty much any function fθ(x) you want

Cons (lots of them):

1 Sampling is hard

2 Evaluating likelihood (learning) is hard

3 Feature learning is even harder

Curse of dimensionality: The fundamental issue is that computing Z (θ)
numerically (when no analytic solution is available) scales exponentially in
the number of dimensions of x.
Can we still learn p? Yes! (but it will not be as fast)
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Exponential families: learning and inference

Consider an exponential family model

p(x ; θ) =
exp(θT f (x))

Z (θ)
.

Given a dataset D, we want to estimate θ via maximum likelihood. The
log-likelihood is concave and equals.

1

|D|
log p(D; θ) =

1

|D|
∑
x∈D

θT f (x)− logZ (θ).

The first term is linear in θ and is easy to handle. The second term equals

logZ (θ) = log
∑
x

exp(θT f (x)).

Unlike the first term, this one does not decompose across x . It is not only
hard optimize, but it is hard to even evaluate that term.
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Computing the normalization constant is hard

As an example, the RBM joint distribution is

pW ,b,c(x, z) =
1

Z
exp

(
xTW z+ bx+ cz

)
where

1 x ∈ {0, 1}n are visible variables (e.g., pixel values)
2 z ∈ {0, 1}m are latent ones

The normalization constant (the “volume”) is

Z (W , b, c) =
∑

x∈{0,1}n

∑
z∈{0,1}m

exp
(
xTW z + bx + cz

)
Note: it is a well defined function of the parameters W , b, c , but no
simple closed-form. Takes time exponential in n,m to compute. This
means that evaluating the objective function pW ,b,c(x, z) for
likelihood based learning is hard.
Optimizing the un-normalized probability exp

(
xTW z + bx + cz

)
is

easy (w.r.t. trainable parameters W , b, c), but optimizing the
likelihood pW ,b,c(x, z) is also difficult..

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 11 23 / 37



Exponential families: gradient-based learning

1

|D|
log p(D; θ) =

1

|D|
∑
x∈D

θT f (x)− logZ (θ).

Obtaining the gradient of the linear part is obviously easy. However,

∇θ logZ (θ) = ∇θ log
∑
x

exp(θT f (x))

=
1∑

x exp(θT f (x))
∇θ
∑
x

exp(θT f (x))

=
1∑

x exp(θT f (x))

∑
x

exp(θT f (x)) · ∇θθT f (x)

=
1∑

x exp(θT f (x))

∑
x

exp(θT f (x)) · f (x)

= Ex∼p[f (x)].

Computing the expectation requires inference with respect to p. Inference in
general is intractable, and therefore so is computing the gradient.
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Exponential families: moment matching

The log-likelihood of an MRF is

1

|D|
log p(D; θ) =

1

|D|
∑
x∈D

θT f (x)− logZ (θ).

Taking the gradient, and using our expression for the gradient of the
partition function, we obtain the expression

∇θ
1

|D|
log p(D; θ) =

1

|D|
∑
x∈D

f (x)− Ex∼p[f (x)]

This is the difference between the expectations of the natural parameters
under the empirical (i.e. data) and the model distribution.
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Approximate learning techniques in ExpFams

To compute gradients, we need to sample from the model. But this is
hard!

We will look at two approximate methods:

1 MCMC sampling from the distribution at each step of gradient
descent; we then approximate the gradient using Monte-Carlo.

2 (Persistent) contrastive divergence, a variant of MCMC sampling
which re-uses the same Markov Chain between iterations.
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Markov Chains: Definition

A (discrete-time) Markov chain is a sequence of random variables
S0, S1,S2, ... with Si ∈ {1, 2, ..., d}, intuitively representing the state
of a system.

The initial state is distributed according to a probability P(S0)

All subsequent states are generated from P(Si | Si−1) that depends
only on the previous random state.

Markov assumption: the probability P(Si | Si−1) is the same at every
step i . The transition probabilities in the entire process depend only on
the given state and not on how we got there.
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Markov Chains: Stationary Distribution

If the initial state S0 is drawn from a vector probabilities p0, we may
represent the probability pt of ending up in each state after t steps as

pt = T tp0 T ∈ Rd×dandTij = P(Snew = i | Sprev = j).

The limit π = limt→∞ pt (when it exists) is called a stationary distribution
of the Markov chain. It’s an eigenvector of T .

A sufficent condition for a stationary distribution is called detailed balance:

π(x ′)T (x | x ′) = π(x)T (x ′ | x) for all x , x ′

It is easy to show that such a π must form a stationary distribution. Just
sum both sides of the equation over x and simplify:

π(x ′) =
∑
x

π(x)T (x ′ | x) for all x means π is eigenvector of T
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Markov Chain Monte Carlo

The idea of MCMC will be to construct a Markov chain whose states will be joint
assignments to the variables in the model and whose stationary distribution will
equal the model probability

p(x ; θ) =
exp(θT f (x))

Z (θ)
.

An MCMC algorithm defines a transition operator T specifying a Markov chain,
an initial variable assignment x0 and performs the following steps.

1 Run the Markov chain from x0 for B burn-in steps.

2 Run the Markov chain for N sampling steps and collect all the states that it
visits.

Assuming B is sufficiently large, the latter collection of states will form samples
from p. We may then use these samples for Monte Carlo integration (or in
importance sampling).
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Constructing MCMC chains with Metropolis-Hastings

The MH method constructs a transition operator T (x ′ | x) from two
components:

A transition kernel Q(x ′ | x), specified by the user (something simple,
like x + noise)

An acceptance probability for moves proposed by Q, specified by the
algorithm as

A(x ′ | x) = min

(
1,

P(x ′)Q(x | x ′)
P(x)Q(x ′ | x)

)
.

Encourages us to move towards more likely points in the distribution
(imagine for example that Q is uniform)
When Q suggests a move to a low-probability region, we do that a
certain fraction of the time.

At each step of the Markov chain, we choose a new point x ′ according to
Q. Then, we either accept this proposed change (with probability α), or
with probability 1− α we remain at our current state.
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Proof of Metropolis-Hastings method

Given any Q the MH algorithm will ensure that P will be a stationary distribution
of the resulting Markov Chain. More precisely, P will satisfy the detailed balance
condition with respect to the MH Markov chain.

To see that, first observe that if A(x ′ | x) < 1, then P(x)Q(x′|x)
P(x′)Q(x|x′) > 1 and thus

A(x | x ′) = 1. When A(x ′ | x) < 1, this lets us write:

A(x ′ | x) =
P(x ′)Q(x | x ′)
P(x)Q(x ′ | x)

P(x ′)Q(x | x ′)A(x | x ′) = P(x)Q(x ′ | x)A(x ′ | x)

P(x ′)T (x | x ′) = P(x)T (x ′ | x),

which is simply the detailed balance condition. T (x | x ′) is full transition operator
of MH obtained by applying both Q and A.
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Gibbs sampling

A widely-used special case of the Metropolis-Hastings methods is Gibbs
sampling. We iterate through the variables one at a time; at each time
step t, we:

1 Sample x ′i ∼ p(xi | x t−i )
2 Set x t+1 = (x t1, ..., x

′
i , ..., x

t
n).

This is often easy, since we only need to condition xi on small set of
variables xi directly depends on (its “Markov blanket”).

Gibbs sampling can be seen as a special case of MH with proposal
Q(x ′i , x−i | xi , x−i ) = P(x ′i | x−i ). It is easy check that the acceptance
probability simplifies to one.

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 11 32 / 37



Sampling from Energy based models

pθ(x) =
1∫

exp(fθ(x))
exp(fθ(x)) =

1

Z (θ)
exp(fθ(x))

No direct way to sample like in autoregressive or flow models. Main
issue: cannot easily compute how likely each possible sample is

However, we can easily compare two samples x, x′.

Use iterative approach based on Metropolis-Hastings MCMC:
1 Initialize x0 randomly, t = 0
2 Let x ′ = x t + noise

1 If fθ(x
′) > fθ(x

t), let x t+1 = x ′

2 Else let x t+1 = x ′ with probability exp(fθ(x
′)− fθ(x

t))

3 Go to step 2

Works in theory, but can take a very long time to converge
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(Persistent) Contrastive Divergence

Goal: maximize fθ(xtrain)
Z(θ)

Idea: Instead of evaluating Z (θ) exactly, use a Monte Carlo estimate.

Contrastive divergence algorithm: sample xsample ∼ pθ with MCMCM,
take step on ∇θ (fθ(xtrain)− fθ(xsample)). Make training data more likely
than typical sample from the model. Recall comparisons are easy in energy
based models!

Persistent CD: reuse the Markov chain across SGD steps
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Training intuition

Goal: maximize fθ(xtrain)
Z(θ) . Increase numerator, decrease denominator.

Intuition: because the model is not normalized, increasing the
un-normalized probability fθ(xtrain) by changing θ does not guarantees that
xtrain becomes relatively more likely (compared to the rest).

We also need to take into account the effect on other “wrong points” and
try to “push them down” to also make Z (θ) small.
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Energy based models: pros and cons

pθ(x) =
1∫

exp(fθ(x))
exp(fθ(x)) =

1

Z (θ)
exp(fθ(x))

Pros:

1 Can plug in pretty much any function fθ(x) you want

2 Can be combined with other model families

3 Can be combined with ideas from graphical models

Cons:

1 Sampling is hard

2 Evaluating likelihood (learning) is hard

3 Feature learning is even harder
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Conclusion

Energy-based models are another useful tool for modeling
high-dimensional probability distributions.

Very flexible class of models. Currently less popular because of
computational issues.

Energy based GANs: energy is represented by a discriminator.
Contrastive samples (like in contrastive divergence) from a GAN-styke
generator.

Reference: LeCun et. al, A Tutorial on Energy-Based Learning
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