
Combining Generative Model Families

Volodymyr Kuleshov

Cornell Tech

Lecture 12

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 12 1 / 35

Announcements

All the presentation slots should be filled!

If you haven’t booked a presentation slot or I haven’t reached out to
you, let me know!

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 12 2 / 35

Lecture Outline

1 Finish Energy-Based Models

Likelihood-based learning
Markov Chain Monte Carlo
(Persistent) Contrastive Divergence

2 Combining Model Families

Autoregressive models + VAEs: PixelVAE
Autoregressive models + Flows: Autoregressive flows
Flows + VAEs: Flow-based posteriors
Multi-modal VAEs
VAEs + RNNs: Variational RNNs
Flows + GANs: FlowGAN
GANs + VAEs: Adversarial Autoencoders
GANs + VAEs: InfoGAN, InfoVAE, β-VAE

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 12 3 / 35

Energy based models: learning and inference

pθ(x) =
1∫

exp(fθ(x))
exp(fθ(x)) =

1

Z (θ)
exp(fθ(x))

Pros:

1 can plug in pretty much any function fθ(x) you want

Cons (lots of them):

1 Sampling is hard

2 Evaluating likelihood (learning) is hard

3 Feature learning is even harder

Curse of dimensionality: The fundamental issue is that computing Z (θ)
numerically (when no analytic solution is available) scales exponentially in
the number of dimensions of x.
Can we still learn p? Yes! (but it will not be as fast)

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 12 4 / 35

Exponential families: moment matching

Consider an exponential family model

p(x ; θ) =
exp(θT f (x))

Z (θ)

whose log-likelihood equals

1

|D|
log p(D; θ) =

1

|D|
∑
x∈D

θT f (x)− logZ (θ).

Taking the gradient, and using our expression for the gradient of the
partition function, we obtain the expression

∇θ
1

|D|
log p(D; θ) =

1

|D|
∑
x∈D

f (x)− Ex∼p[f (x)]

This is the difference between the expectations of the natural parameters
under the empirical (i.e. data) and the model distribution.

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 12 5 / 35

Approximate learning techniques in ExpFams

To compute gradients, we need to sample from the model. But this is
hard!

We will look at two approximate methods:

1 MCMC sampling from the distribution at each step of gradient
descent; we then approximate the gradient using Monte-Carlo.

2 (Persistent) contrastive divergence, a variant of MCMC sampling
which re-uses the same Markov Chain between iterations.

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 12 6 / 35

Markov Chains: Definition

A (discrete-time) Markov chain is a sequence of random variables
S0, S1,S2, ... with Si ∈ {1, 2, ..., d}, intuitively representing the state
of a system.

The initial state is distributed according to a probability P(S0)

All subsequent states are generated from P(Si | Si−1) that depends
only on the previous random state.

Markov assumption: the probability P(Si | Si−1) is the same at every
step i . The transition probabilities in the entire process depend only on
the given state and not on how we got there.
Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 12 7 / 35

Markov Chains: Stationary Distribution

If the initial state S0 is drawn from a vector probabilities p0, we may
represent the probability pt of ending up in each state after t steps as

pt = T tp0 T ∈ Rd×dandTij = P(Snew = i | Sprev = j).

The limit π = limt→∞ pt (when it exists) is called a stationary distribution
of the Markov chain. It’s an eigenvector of T .

A sufficent condition for a stationary distribution is called detailed balance:

π(x ′)T (x | x ′) = π(x)T (x ′ | x) for all x , x ′

It is easy to show that such a π must form a stationary distribution. Just
sum both sides of the equation over x and simplify:

π(x ′) =
∑
x

π(x)T (x ′ | x) for all x means π is eigenvector of T

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 12 8 / 35

Markov Chain Monte Carlo

The idea of MCMC will be to construct a Markov chain whose states will be joint
assignments to the variables in the model and whose stationary distribution will
equal the model probability

p(x ; θ) =
exp(θT f (x))

Z (θ)
.

An MCMC algorithm defines a transition operator T specifying a Markov chain,
an initial variable assignment x0 and performs the following steps.

1 Run the Markov chain from x0 for B burn-in steps.

2 Run the Markov chain for N sampling steps and collect all the states that it
visits.

Assuming B is sufficiently large, the latter collection of states will form samples
from p. We may then use these samples for Monte Carlo integration (or in
importance sampling).

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 12 9 / 35

Constructing MCMC chains with Metropolis-Hastings

The MH method constructs a transition operator T (x ′ | x) from two
components:

A transition kernel Q(x ′ | x), specified by the user (something simple,
like x + noise)

An acceptance probability for moves proposed by Q, specified by the
algorithm as

A(x ′ | x) = min

(
1,

P(x ′)Q(x | x ′)
P(x)Q(x ′ | x)

)
.

Encourages us to move towards more likely points in the distribution
(imagine for example that Q is uniform)
When Q suggests a move to a low-probability region, we do that a
certain fraction of the time.

At each step of the Markov chain, we choose a new point x ′ according to
Q. Then, we either accept this proposed change (with probability α), or
with probability 1− α we remain at our current state.
Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 12 10 / 35

Proof of Metropolis-Hastings method

Given any Q the MH algorithm will ensure that P will be a stationary distribution
of the resulting Markov Chain. More precisely, P will satisfy the detailed balance
condition with respect to the MH Markov chain.

To see that, first observe that if A(x ′ | x) < 1, then P(x)Q(x′|x)
P(x′)Q(x|x′) > 1 and thus

A(x | x ′) = 1. When A(x ′ | x) < 1, this lets us write:

A(x ′ | x) =
P(x ′)Q(x | x ′)
P(x)Q(x ′ | x)

P(x ′)Q(x | x ′)A(x | x ′) = P(x)Q(x ′ | x)A(x ′ | x)

P(x ′)T (x | x ′) = P(x)T (x ′ | x),

which is simply the detailed balance condition. T (x | x ′) is full transition operator
of MH obtained by applying both Q and A.

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 12 11 / 35

Sampling from Energy based models

pθ(x) =
1∫

exp(fθ(x))
exp(fθ(x)) =

1

Z (θ)
exp(fθ(x))

No direct way to sample like in autoregressive or flow models. Main
issue: cannot easily compute how likely each possible sample is

However, we can easily compare two samples x, x′.

Use iterative approach based on Metropolis-Hastings MCMC:
1 Initialize x0 randomly, t = 0
2 Let x ′ = x t + noise

1 If fθ(x
′) > fθ(x

t), let x t+1 = x ′

2 Else let x t+1 = x ′ with probability exp(fθ(x
′)− fθ(x

t))

3 Go to step 2

Works in theory, but can take a very long time to converge

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 12 12 / 35

(Persistent) Contrastive Divergence

Goal: maximize fθ(xtrain)
Z(θ)

Idea: Instead of evaluating Z (θ) exactly, use a Monte Carlo estimate.

Contrastive divergence algorithm: sample xsample ∼ pθ with MCMCM,
take step on ∇θ (fθ(xtrain)− fθ(xsample)). Make training data more likely
than typical sample from the model. Recall comparisons are easy in energy
based models!

Persistent CD: reuse the Markov chain across SGD steps

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 12 13 / 35

Training intuition

Goal: maximize fθ(xtrain)
Z(θ) . Increase numerator, decrease denominator.

Intuition: because the model is not normalized, increasing the
un-normalized probability fθ(xtrain) by changing θ does not guarantees that
xtrain becomes relatively more likely (compared to the rest).

We also need to take into account the effect on other “wrong points” and
try to “push them down” to also make Z (θ) small.

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 12 14 / 35

Energy based models: pros and cons

pθ(x) =
1∫

exp(fθ(x))
exp(fθ(x)) =

1

Z (θ)
exp(fθ(x))

Pros:

1 Can plug in pretty much any function fθ(x) you want

2 Can be combined with other model families

3 Can be combined with ideas from graphical models

Cons:

1 Sampling is hard

2 Evaluating likelihood (learning) is hard

3 Feature learning is even harder

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 12 15 / 35

Lecture Outline

1 Finish Energy-Based Models

Likelihood-based learning
Markov Chain Monte Carlo
(Persistent) Contrastive Divergence

2 Combining Model Families

Autoregressive models + VAEs: PixelVAE
Autoregressive models + Flows: Autoregressive flows
Flows + VAEs: Flow-based posteriors
Multi-modal VAEs
VAEs + RNNs: Variational RNNs
Flows + GANs: FlowGAN
GANs + VAEs: Adversarial Autoencoders
GANs + VAEs: InfoGAN, InfoVAE, β-VAE

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 12 16 / 35

Summary

Story so far

Representation: Latent variable vs. fully observed

Objective function and optimization algorithm: Many divergences and
distances optimized via likelihood-free (two sample test) or likelihood
based methods

Each have Pros and Cons

Plan for today: Combining models

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 12 17 / 35

Variational Autoencoder

A mixture of an infinite number of Gaussians:

1 z ∼ N (0, I)

2 p(x | z) = N (µθ(z),Σθ(z)) where µθ,Σθ are neural networks

3 p(x | z) and p(z) usually simple, e.g., Gaussians or conditionally
independent Bernoulli vars (i.e., pixel values chosen independently
given z)

4 Idea: increase complexity using an autoregressive model

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 12 18 / 35

PixelVAE (Gulrajani et al.,2017)

z is a feature map with the same resolution as the image x

Autoregressive structure: p(x | z) =
∏

i p(xi | x1, · · · , xi−1, z)

p(x | z) is a PixelCNN
Prior p(z) can also be autoregressive
Can be hierarchical: p(x | z1)p(z1 | z2)

State-of-the art log-likelihood on some datasets; learns features (unlike
PixelCNN); computationally cheaper than PixelCNN (shallower)

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 12 19 / 35

Autoregressive flow

Z

X

fθ

Flow model, the marginal likelihood p(x) is given by

pX (x; θ) = pZ
(
f−1θ (x)

) ∣∣∣∣∣det
(
∂f−1θ (x)

∂x

)∣∣∣∣∣
where pZ (z) is typically simple (e.g., a Gaussian). More complex
prior?

Prior pZ (z) can be autoregressive pZ (z) =
∏

i p(zi | z1, · · · , zi−1).

Autoregressive models are related to flows.Just another MAF layer.

See also neural autoregressive flows (Huang et al., ICML-18)

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 12 20 / 35

VAE + Flow Model

φ z

x

θ

log p(x; θ) ≥
∑
z

q(z|x;φ) log p(z, x; θ) + H(q(z|x;φ)) = L(x; θ, φ)︸ ︷︷ ︸
ELBO

log p(x; θ) = L(x; θ, φ) + DKL(q(z | x;φ)‖p(z|x; θ))︸ ︷︷ ︸
Gap between true log-likelihood and ELBO

q(z|x;φ) is often too simple (Gaussian) compared to the true
posterior p(z|x; θ), hence ELBO bound is loose

Idea: Make posterior more flexible: z′ ∼ q(z′|x;φ), z = fφ′(z
′) for an

invertible fφ′ (Rezende and Mohamed, 2015; Kingma et al., 2016)

Still easy to sample from, and can evaluate density.
Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 12 21 / 35

VAE + Flow Model

Posterior approximation is more flexible, hence we can get tighter ELBO
(closer to true log-likelihood).

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 12 22 / 35

Multimodal variants

Goal: Learn a joint distribution over the two domains p(x1, x2), e.g., color
and gray-scale images Can use a VAE style model:

z

x1 x2

Learn pθ(x1, x2), use inference nets qφ(z | x1), qφ(z | x2), qφ(z | x1, x2).

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 12 23 / 35

Variational RNN

Goal: Learn a joint distribution over a sequence p(x1, · · · , xT)

VAE for sequential data, using latent variables z1, · · · , zT . Instead of
training separate VAEs zi → xi , train a joint model:

p(x≤T , z≤T) =
T∏
t=1

p(xt | z≤t , x<t)p(zt | z<t , x<t)

zt

ht−1 ht

xt

(a) Prior

zt

ht−1 ht

xt

(b) Generation

zt

ht−1 ht

xt

(c) Recurrence

zt

ht−1 ht

xt

(d) Inference

Chung et al, 2016

Use RNNs to model the conditionals (similar to PixelRNN)

Use RNNs for inference q(z≤T |x≤T) =
∏T

t=1 q(zt | z<t , x≤t)

Train like VAE to maximize ELBO. Conceptually similar to PixelVAE.
Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 12 24 / 35

Combining losses

Z

X

fθ

Flow model, the marginal likelihood p(x) is given by

pX (x; θ) = pZ
(
f−1θ (x)

) ∣∣∣∣∣det
(
∂f−1θ (x)

∂x

)∣∣∣∣∣
Can also be thought of as the generator of a GAN

Should we train by minθ DKL(pdata, pθ) or minθ JSD(pdata, pθ)?

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 12 25 / 35

FlowGAN

Although DKL(pdata, pθ) = 0 if and only if JSD(pdata, pθ) = 0, optimizing
one does not necessarily optimize the other. If z, x have same dimensions,
can optimize minθ KL(pdata, pθ) + λJSD(pdata, pθ)

Interpolates between a GAN and a flow model
Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 12 26 / 35

Adversarial Autoencoder (VAE + GAN)

φ z

x

θ

log p(x; θ) = L(x; θ, φ)︸ ︷︷ ︸
ELBO

+DKL(q(z | x;φ)‖p(z|x; θ))

Ex∼pdata [L(x; θ, φ)]︸ ︷︷ ︸
≈training obj.

= Ex∼pdata [log p(x; θ)− DKL(q(z | x;φ)‖p(z|x; θ))]

up to const.
≡ −DKL(pdata(x)‖p(x; θ))︸ ︷︷ ︸

equiv. to MLE

−Ex∼pdata [DKL(q(z | x;φ)‖p(z|x; θ))]

Note: regularized maximum likelihood estimation (Shu et al, Amortized
inference regularization)

Can add in a GAN objective −JSD(pdata, p(x; θ)) to get sharper samples,
i.e., discriminator attempting to distinguish VAE samples from real ones.

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 12 27 / 35

An alternative interpretation

φ z

x

θ

Ex∼pdata [L(x; θ, φ)]︸ ︷︷ ︸
≈training obj.

= Ex∼pdata [log p(x; θ)− DKL(q(z | x;φ)‖p(z|x; θ))]

up to const.
≡ −DKL(pdata(x)‖p(x; θ))− Ex∼pdata [DKL(q(z | x;φ)‖p(z|x; θ))]

= −
∑
x

pdata(x)

(
log

pdata(x)

p(x; θ)
+
∑
z

q(z | x;φ) log
q(z | x;φ)
p(z|x; θ)

)

= −
∑
x

pdata(x)

(∑
z

q(z | x;φ) log
q(z | x;φ)pdata(x)
p(z|x; θ)p(x; θ)

)

= −
∑
x,z

pdata(x)q(z | x;φ) log
pdata(x)q(z | x;φ)
p(x; θ)p(z|x; θ)

= −DKL(pdata(x)q(z | x;φ)︸ ︷︷ ︸
q(z,x;φ)

‖ p(x; θ)p(z|x; θ)︸ ︷︷ ︸
p(z,x;θ)

)

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 12 28 / 35

An alternative interpretation

φ z

x

θ

Ex∼pdata [L(x; θ, φ)︸ ︷︷ ︸
ELBO

] ≡ −DKL(pdata(x)q(z | x;φ)︸ ︷︷ ︸
q(z,x;φ)

‖ p(x; θ)p(z|x; θ)︸ ︷︷ ︸
p(z,x;θ)

)

Optimizing ELBO is the same as matching the inference distribution
q(z, x;φ) to the generative distribution p(z, x; θ) = p(z)p(x|z; θ)

Intuition: p(x; θ)p(z|x; θ) = pdata(x)q(z | x;φ) if
1 pdata(x) = p(x; θ)
2 q(z | x;φ) = p(z|x; θ) for all x
3 Hence we get the VAE objective:
−DKL(pdata(x)‖p(x; θ))− Ex∼pdata [DKL(q(z | x;φ)‖p(z|x; θ))]

Many other variants are possible! VAE + GAN:

−JSD(pdata(x)‖p(x; θ))− DKL(pdata(x)‖p(x; θ))− Ex∼pdata [DKL(q(z | x;φ)‖p(z|x; θ))]
Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 12 29 / 35

Adversarial Autoencoder (VAE + GAN)

φ z

x

θ

Ex∼pdata [L(x; θ, φ)︸ ︷︷ ︸
ELBO

] ≡ −DKL(pdata(x)q(z | x;φ)︸ ︷︷ ︸
q(z,x;φ)

‖ p(x; θ)p(z|x; θ)︸ ︷︷ ︸
p(z,x;θ)

)

Optimizing ELBO is the same as matching the inference distribution
q(z, x;φ) to the generative distribution p(z, x; θ)

Symmetry: Using alternative factorization:
p(z)p(x|z; θ) = q(z;φ)q(x | z;φ) if

1 q(z;φ) = p(z)
2 q(x | z;φ) = p(x|z; θ) for all z
3 We get an equivalent form of the VAE objective:
−DKL(q(z;φ)‖p(z))− Ez∼q(z;φ) [DKL(q(x | z;φ)‖p(x|z; θ))]

Other variants are possible. For example, can add −JSD(q(z;φ)‖p(z)) to
match features in latent space (Zhao et al., 2017; Makhzani et al, 2018)

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 12 30 / 35

Information Preference

φ z

x

θ

Ex∼pdata [L(x; θ, φ)︸ ︷︷ ︸
ELBO

] ≡ −DKL(pdata(x)q(z | x;φ)︸ ︷︷ ︸
q(z,x;φ)

‖ p(x; θ)p(z|x; θ)︸ ︷︷ ︸
p(z,x;θ)

)

ELBO is optimized as long as q(z, x;φ) = p(z, x; θ). Many solutions are
possible! For example,

1 p(z, x; θ) = p(z)p(x|z; θ) = p(z)pdata(x)
2 q(z, x;φ) = pdata(x)q(z|x;φ) = pdata(x)p(z)
3 Note z and z are independent. z carries no information about x. This

happens in practice when p(x|z; θ) is too flexible, like PixelCNN.

Issue: Many more variables than constraints

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 12 31 / 35

InfoGAN

Explicitly add a mutual information term to the objective

−DKL(pdata(x)q(z | x;φ)︸ ︷︷ ︸
q(z,x;φ)

‖ p(x; θ)p(z|x; θ)︸ ︷︷ ︸
p(z,x;θ)

) + αMI (x, z)

MI intuitively measures how far x and z are from being independent

MI (x, z) = DKL (p(z, x; θ)‖p(z)p(x; θ))

InfoGAN (Chen et al, 2016) used to learn meaningful (disentangled?)
representations of the data

MI (x, z)− Ex∼pθ [DKL(pθ(z|x)‖qφ(z|x))]− JSD(pdata(x)‖pθ(x))

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 12 32 / 35

InfoGAN

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 12 33 / 35

β-VAE

Model proposed to learn disentangled features (Higgins, 2016)

−Eqφ(x,z)[log pθ(x|z)] + βEx∼pdata [DKL(qφ(z|x)‖p(z))]

It is a VAE with scaled up KL divergence term. This is equivalent (up to
constants) to the following objective:

(β − 1)MI (x; z) + βDKL(qφ(z)‖p(z))) + Eqφ(z)[DKL(qφ(x|z)‖pθ(x|z))]

See The Information Autoencoding Family: A Lagrangian Perspective on
Latent Variable Generative Models for more examples.

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 12 34 / 35

Conclusion

We have covered several useful building blocks: autoregressive, latent
variable models, flow models, GANs.

Can be combined in many ways to achieve different tradeoffs: many
of the models we have seen today were published in top ML
conferences in the last couple of years

Lots of room for exploring alternatives in your projects!

Which one is best? Evaluation is tricky. Still largely empirical

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 12 35 / 35

