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@ Unfortunately, we are not able to get a bigger room in Ithaca.

@ There are 20 enrollment slots for Ithaca. Will have to prioritize PhD
students from now on.

@ We will be looking for a TA if the course ends up having > 25 people.

@ Hangouts for office hours link posted on website.

@ A few teams have started applying for presentation slots. These will

be posted on the website.
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Learning a generative model

@ We are given a training set of examples, e.g., images of dogs
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Model family

@ We want to learn a probability distribution p(x) over images x such that

o Generation: If we sample x,en ~ p(x), Xnew should look like a dog
(sampling)

o Density estimation: p(x) should be high if x looks like a dog, and low
otherwise (anomaly detection)

o Unsupervised representation learning: We should be able to learn
what these images have in common, e.g., ears, tail, etc. (features)

@ First question: how to represent p(x)
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Lecture Outline

@ Representing probability distributions

e Multi-variate probability distributions and conditional independence
o Bayesian networks

@ Discriminative vs. generative models

o Naive Bayes vs. Logistic Regression
e Which one to use?

© Neural networks
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Basic discrete distributions

@ Bernoulli distribution: (biased) coin flip
o D = {Heads, Tails}
o Specify P(X = Heads) = p. Then P(X = Tails) =1 — p.
o Write: X ~ Ber(p)

Sampling: flip a (biased) coin

o Categorical distribution: (biased) m-sided dice
D={1,---,m}

Specify P(Y = i) = p;, such that > p; =1
Write: Y ~ Cat(p1,--- , pm)

Sampling: roll a (biased) die
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Example of joint distribution

Modeling a single pixel's color. Three discrete random variables:
o Red Channel R. Val(R) = {0,---,255}
o Green Channel G. Val(G) = {0,---,255}
@ Blue Channel B. Val(B) = {0,--- ,255}

Sampling from the joint distribution (r, g, b) ~ p(R, G, B) randomly
generates a color for the pixel. How many parameters do we need to
specify the joint distribution p(R =r, G = g, B = b)?

256 * 256 % 256 — 1
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Example of joint distribution

@ Suppose Xi, ..., X, are binary (Bernoulli) random variables, i.e.,
Val(X;) = {0, 1} = {Black, White}.
@ How many possible states?

2X2X o x2 =2"
N—_———

n times
e Sampling from p(xi,...,x,) generates an image
@ How many parameters to specify the joint distribution p(xi, ..., x,)
over n binary pixels?
2" —1
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Structure through independence

e If Xq,...,X, are independent, then

p(xt, .. xa) = p(x1)p(x2) - - p(xn)

How many possible states? 2”7

How many parameters to specify the joint distribution p(x, ..., x,)?
e How many to specify the marginal distribution p(x;)? 1

2" entries can be described by just n numbers (if [Val(X;)| = 2)!

Independence assumption is too strong. Model not likely to be useful
o For example, each pixel chosen independently when we sample from it.
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Key notion: conditional independence

@ Two events A, B are conditionally independent given event C if

p(AN BIC) = p(AIC)p(BIC)

@ Random variables X, Y are conditionally independent given Z if for
all values x €Val(X), y €Val(Y), z €Val(Z)

p(X=xNY =y|Z=2z)=p(X =x|Z=2)p(Y =y|Z=2)

We will also write p(X, Y|Z) = p(X|Z)p(Y|Z). Note the more
compact notation.

Equivalent definition: p(X|Y, Z) = p(X|2).
We write X L Y | Z
Similarly for sets of random variables, X L Y | Z
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Two important rules

© Chain rule Let Sp,...S5, be events, p(S;) > 0.
p(S1NSan---NS,) =p(S1)p(S2 | S1) - p(Sn | S1N...NSp-1)
@ Bayes’ rule Let 51,5, be events, p(S1) > 0 and p(S2) > 0.

p(51NS2) _ p(S2 | S1)p(S1)
p(S2) p(S2)

p(S1 | S2) =
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Structure through conditional independence

@ Using Chain Rule

p(x1,...,xn) = p(x1)p(x2 | x1)p(x3 | x1,%x2) -+ p(Xn | X1, , Xn—1)

e How many parameters? 1424 .. +27"1 =27 1
o p(x1) requires 1 parameter
o p(x2 | x1 = 0) requires 1 parameter, p(xz | x; = 1) requires 1 parameter
Total 2 parameters.
° -

@ 2" — 1 is still exponential, chain rule does not buy us anything.
@ Now suppose Xjy1 L Xi,...,Xj—1 | X, then

p(xts. .y xa) = plxi)p(x | x1)p(xs | X0, x2) -+ p(Xa | X1 mX0—1)
= p(a)p(x | x1)p(xs | x2) - p(xn | Xo—1)

@ How many parameters? 2n — 1. Exponential reduction!
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Structure through conditional independence

@ Suppose we have 4 random variables Xy, -+, X
@ Using Chain Rule we can always write
p(x1, .-, xa) = p(x1)p(x2 | x1)p(xs | x1,x2)p(xa | x1, X2, x3)
o If Xo L Xo | {X1, X3}, we can simplify as
p(x1, .-, xn) = p(x1)p(x2 | x1)p(x3 | x1,x2)p(xa | x1, 24, x3)
@ Using Chain Rule with a different ordering we can always also write

p(xi,. ... xa) = p(xa)p(x3 | xa)p(x2 | x3,xa)p(x1 | X2, X3, Xa)

If X1 L {X2, X3} | X4, we can simplify as

p(xi, ..., xa) = p(xa)p(xs | xa)p(x2 | x3,xa)p(x1 | xor%3, xa)

o Bayesian Networks: assume an ordering and a set of conditional
independencies to get compact representation
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Bayes Network: General |dea

@ Use conditional parameterization (instead of joint parameterization)

@ For each random variable Xj, specify p(xi|xa,) for set Xa, of random
variables

@ Then get joint parametrization as

p(X1,y ... Xn) = Hp(x,-]xAi)

@ Need to guarantee it is a legal probability distribution. It has to
correspond to a chain rule factorization, with factors simplified due to
assumed conditional independencies
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Bayesian networks

A Bayesian network is specified by a directed acyclic graph
G = (V, E) with:
@ One node j € V for each random variable X;
@ One conditional probability distribution (CPD) per node, p(x; | Xpa(i)),
specifying the variable's probability conditioned on its parents’ values

Graph G = (V/, E) is called the structure of the Bayesian Network

Defines a joint distribution:

p(x1,...xn) = H p(x; | xPa(i))
iev

Claim: p(x1,...x,) is a valid probability distribution

Economical representation: exponential in |Pa(/)], not | V|
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Directed cycle DAG

DAG stands for Directed Acyclic Graph
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Example

@ Consider the following Bayesian network:
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@ What is its joint distribution?

p(xi,...xn) =

p(dui)g7s)l) =

L] p(xi | %pagiy)

iev

p(d)p(i)p(g | i,d)p(s | i)p(l | &)
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Bayesian network structure implies conditional

independencies!

Intelligence

@ The joint distribution corresponding to the above BN factors as

p(d,i,g,s,1) = p(d)p(i)p(g | i,d)p(s | i)p(/| g)

@ However, by the chain rule, any distribution can be written as

p(d,i,g,s,1)=p(d)p(i | d)p(g | i,d)p(s|i,d,g)p(l|g,d,i,s)

@ Thus, we are assuming the following extra independencies:
D11 S1{D,G}|I, L1{l,D,S}|G.
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e Bayesian networks given by (G, P) where P is specified as a set of
local conditional probability distributions associated with G's nodes

o Efficient representation using a graph-based data structure

@ Computing the probability of any assignment is obtained by
multiplying CPDs

@ Can identify some conditional independence properties by looking at
graph properties

@ Next: generative vs. discriminative; functional parameterizations
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Lecture Outline

@ Representing probability distributions

e Multi-variate probability distributions and conditional independence
o Bayesian networks

@ Discriminative vs. generative models

o Naive Bayes vs. Logistic Regression
o Bayesian networks

© Neural networks
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Naive Bayes for single label prediction

o Classify e-mails as spam (Y = 1) or not spam (Y = 0)
o Let 1: nindex the words in our vocabulary (e.g., English)
e X; =1 if word i appears in an e-mail, and O otherwise
o E-mails are drawn according to some distribution p(Y, Xi,...,X,)

@ Words are conditionally independent given Y

Label

@ Then
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Example: naive Bayes for classification

o Classify e-mails as spam (Y = 1) or not spam (Y = 0)
o Let 1: nindex the words in our vocabulary (e.g., English)
e X; =1 if word i appears in an e-mail, and 0 otherwise
o E-mails are drawn according to some distribution p(Y, Xi,...,X,)

@ Suppose that the words are conditionally independent given Y. Then,

ply:xi,- %) = p(y) [[ p(xi | ¥)
i=1

Estimate parameters from data. Predict with Bayes rule:

p(Y =]l p(xi | Y =1)

p(Y=1|x1,...x5) = n
V=t ) = s oY = ) [ P | Y =)

@ Are the independence assumptions made here reasonable? Nearly all
probabilistic models are “wrong”, but many are nonetheless useful
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Discriminative models

@ Using chain rule p(Y,X) = p(X | Y)p(Y) = p(Y | X)p(X).
Corresponding Bayesian networks:

Generative Discriminative

@ However, suppose all we need for prediction is p(Y | X)
@ In the left model, we need to specify/learn both p(Y) and p(X | Y),
then compute p(Y | X) via Bayes rule
@ In the right model, it suffices to estimate just the conditional
distribution p(Y | X)
o We never need to model/learn/use p(X)!
o Called a discriminative model because it is only useful for
discriminating Y's label when given X
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Discriminative versus generative models

@ Since X is a random vector, chain rules will give
o p(Y,X)=p(Y)p(Xe | Y)p(Xo | YV, X1) - p(Xp | Y, Xy, o+, Xno1)
o p(Y,X) = p(X1)p(Xz | X1)p(X3 | X1, X2) - p(Y | X1, -+, Xno1, Xn)

() 2=
A\ 0{‘@ (%)
D ‘gﬁ O

We must make the following choices:

@ In the generative model, p(Y) is simple, but how do we parameterize
POX; | Xpa(i: V)7

@ In the discriminative model, how do we parameterize p(Y | X)? Here
we assume we don't care about modeling p(X) because X is always
given to us in a classification problem
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@ For the generative model, assume that X; L X_; | Y (naive Bayes)

i 5

RO ©
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Logistic regression

@ For the discriminative model, assume that
pY =1|xa) = f(x,)
@ Not represented as a table anymore. It is a parameterized function of
x (regression)
e Has to be between 0 and 1

o Depend in some simple but reasonable way on xy,--- , x,
o Completely specified by a vector & of n+ 1 parameters (compact

representation)
Linear dependence: let z(ax,x) = ag + Y i jx;. Then,
p(Y =1|x;a) =o(z(a,x)), where o(z) = 1/(1 + e ?) is called the
logistic function:

e‘{‘b’"’e =
©
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Logistic regression

Linear dependence: let z(a,x) = ap + Y iy @ix;. Then,

p(Y =1|x; a)=o0(z(a,x)), where o(z) = 1/(1 + e ?) is called the
logistic function

Contours of equal probability defined by C¢

Probability map defined by

@ Decision boundary p(Y =1 | x; ) > 0.5 is linear in x
@ Equal probability contours are straight lines

© Probability rate of change has very specific form (third plot)
Volodymyr Kuleshov (Cornell Tech)
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Discriminative models are powerful

Generative (Naive Bayes) Discriminative (logistic regression)

@ Logistic model does not assume X; L X_; | Y, unlike naive Bayes
@ This can make a big difference in many applications

@ For example, in spam classification, let X; = 1[“bank” in e-mail] and
X, = 1[“account” in e-mail]

@ Regardless of whether spam, these always appear together, i.e. X; = X5

@ Learning in naive Bayes results in p(Xi | Y) = p(Xz2 | Y). Thus, naive Bayes
double counts the evidence

@ Learning with logistic regression sets a; = 0 or ap = 0, in effect ignoring it
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Generative models are still very useful

Using chain rule p(Y,X) = p(X | Y)p(Y) = p(Y | X)p(X). Corresponding
Bayesian networks:

Generative Discriminative

© Using a conditional model is only possible when X is always observed

e When some X; variables are unobserved, the generative model allows us
to compute p(Y | Xevidence) by marginalizing over the unseen variables
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Lecture Outline

@ Representing probability distributions

e Multi-variate probability distributions and conditional independence
o Bayesian networks

@ Discriminative vs. generative models

o Naive Bayes vs. logistic regression
e Which one to use?

© Neural networks
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Neural Models

@ In discriminative models, we assume that
p(Y=1|xa)=f(x,a)

@ Linear dependence:
o let z(a,x) = g + Y i_; ix;.
o p(Y=1]|xa)=o0(z(a,x)), where o(z) =1/(1+ e~ ?) is the
logistic function
e Dependence might be too simple
© Non-linear dependence: let h(A, b, x) = g(Ax + b) be a non-linear
transformation of the inputs (features).
pNeural(Y =1 | X; &, A7 b) = 0'(040 + Z?:l aihi)
o More flexible
o More parameters: A, b,
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Neural Models

@ In discriminative models, we assume that
p(Y =1|xa)="1f(x,a)

@ Linear dependence: let z(a,x) = ag + Y1 q Qjx;.
p(Y =1]|x &) =f(z(a,x)), where f(z) =1/(1+ e~ %) is the
logistic function
e Dependence might be too simple
© Non-linear dependence: let h(A, b, x) = f(Ax + b) be a non-linear
transformation of the inputs (features).
pNeural(Y =1 | X; o, A, b) = g(ao + Z,b:]_ aihi)
o More flexible
o More parameters: A, b,
o Can repeat multiple times to get a neural network
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Bayesian networks vs neural models

@ Using Chain Rule

p(x1, x2,x3,xa) = p(x1)p(x2 | x1)p(x3 | x1,x2)p(xa | x1, X2, x3)

Fully General
@ Bayes Net

p(x1, X2, x3, xa) ~ p(x1)p(x2 | x1)p(x3 | X1, x2)p(xa | X1, X2,3)

Assumes conditional independencies
@ Neural Models

P(X17X2,X3,X4) ~ P(Xl)P(Xz | Xl)pNeural(X3 | XlaXZ)pNeural(X4 | X1,X2,X3)

Assume specific functional form for the conditionals. A sufficiently
deep neural net can approximate any function.
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Continuous variables

o If X is a continuous random variable, we can usually represent it using
its probability density function px : R — R™. However, we cannot
represent this function as a table anymore. Typically consider

parameterized densities:
o Gaussian: X ~ N (p,0) if px(x) = - 1277 e (mn) /207
o Uniform: X ~ U(a, b) if px(x) = z1[a < x < b]
o Etc.

o If X is a continuous random vector, we can usually represent it using
its joint probability density function:

o Gaussian: if px(x) = m exp (—1(x — p)TE M (x — p))

@ Chain rule, Bayes rule, etc all still apply. For example,

px.v.z(x,¥,2) = px(X)pyix (¥ | X)Pziix,vy(Z | X,¥)
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Continuous variables

@ This means we can still use Bayesian networks with continuous (and
discrete) variables. Examples:
@ Mixture of 2 Gaussians: Network Z — X with factorization
pzx(z,x) = pz(z)px|z(x | z) and
e Z ~ Bernoulli(p)
o X |(Z=0)~Nto,00) , X | (Z=1) ~ N(yuz, 1)
o The parameters are p, g, 0o, {1, 01
o Network Z — X with factorization pz x(z,x) = pz(z)px|z(x | 2)
o Z ~U(a,b)
o X|(Z=2z)~N(z,0)
e The parameters are a, b, o
@ Variational autoencoder: Network Z — X with factorization
Pzx(z,x) = pz(z)px|z(x | z) and
o Z~N(0,1)
o X |(Z=2z)~N(us(z),e’#?) where ug : R — R and o are neural
networks with parameters (weights) 6, ¢ respectively
o Note: Even if ;19,04 are deep nets, functional form is Gaussian
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