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Updates

Unfortunately, we are not able to get a bigger room in Ithaca.

There are 20 enrollment slots for Ithaca. Will have to prioritize PhD
students from now on.

We will be looking for a TA if the course ends up having > 25 people.

Hangouts for office hours link posted on website.

A few teams have started applying for presentation slots. These will
be posted on the website.
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Learning a generative model

We are given a training set of examples, e.g., images of dogs

We want to learn a probability distribution p(x) over images x such that

Generation: If we sample xnew ∼ p(x), xnew should look like a dog
(sampling)
Density estimation: p(x) should be high if x looks like a dog, and low
otherwise (anomaly detection)
Unsupervised representation learning: We should be able to learn
what these images have in common, e.g., ears, tail, etc. (features)

First question: how to represent p(x)
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Lecture Outline

1 Representing probability distributions

Multi-variate probability distributions and conditional independence
Bayesian networks

2 Discriminative vs. generative models

Naive Bayes vs. Logistic Regression
Which one to use?

3 Neural networks
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Basic discrete distributions

Bernoulli distribution: (biased) coin flip

D = {Heads,Tails}
Specify P(X = Heads) = p. Then P(X = Tails) = 1− p.
Write: X ∼ Ber(p)
Sampling: flip a (biased) coin

Categorical distribution: (biased) m-sided dice

D = {1, · · · ,m}
Specify P(Y = i) = pi , such that

∑
pi = 1

Write: Y ∼ Cat(p1, · · · , pm)
Sampling: roll a (biased) die
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Example of joint distribution

Modeling a single pixel’s color. Three discrete random variables:

Red Channel R. Val(R) = {0, · · · , 255}
Green Channel G . Val(G ) = {0, · · · , 255}
Blue Channel B. Val(B) = {0, · · · , 255}

Sampling from the joint distribution (r , g , b) ∼ p(R,G ,B) randomly
generates a color for the pixel. How many parameters do we need to
specify the joint distribution p(R = r ,G = g ,B = b)?

256 ∗ 256 ∗ 256− 1
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Example of joint distribution

Suppose X1, . . . ,Xn are binary (Bernoulli) random variables, i.e.,
Val(Xi ) = {0, 1} = {Black,White}.
How many possible states?

2× 2× · · · × 2︸ ︷︷ ︸
n times

= 2n

Sampling from p(x1, . . . , xn) generates an image
How many parameters to specify the joint distribution p(x1, . . . , xn)
over n binary pixels?

2n − 1
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Structure through independence

If X1, . . . ,Xn are independent, then

p(x1, . . . , xn) = p(x1)p(x2) · · · p(xn)

How many possible states? 2n

How many parameters to specify the joint distribution p(x1, . . . , xn)?

How many to specify the marginal distribution p(x1)? 1

2n entries can be described by just n numbers (if |Val(Xi )| = 2)!

Independence assumption is too strong. Model not likely to be useful

For example, each pixel chosen independently when we sample from it.
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Key notion: conditional independence

Two events A,B are conditionally independent given event C if

p(A ∩ B|C ) = p(A|C )p(B|C )

Random variables X ,Y are conditionally independent given Z if for
all values x ∈Val(X ), y ∈Val(Y ), z ∈Val(Z )

p(X = x ∩ Y = y |Z = z) = p(X = x |Z = z)p(Y = y |Z = z)

We will also write p(X ,Y |Z ) = p(X |Z )p(Y |Z ). Note the more
compact notation.

Equivalent definition: p(X |Y ,Z ) = p(X |Z ).

We write X ⊥ Y | Z
Similarly for sets of random variables, X ⊥ Y | Z
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Two important rules

1 Chain rule Let S1, . . .Sn be events, p(Si ) > 0.

p(S1 ∩ S2 ∩ · · · ∩ Sn) = p(S1)p(S2 | S1) · · · p(Sn | S1 ∩ . . . ∩ Sn−1)

2 Bayes’ rule Let S1,S2 be events, p(S1) > 0 and p(S2) > 0.

p(S1 | S2) =
p(S1 ∩ S2)

p(S2)
=

p(S2 | S1)p(S1)

p(S2)
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Structure through conditional independence

Using Chain Rule

p(x1, . . . , xn) = p(x1)p(x2 | x1)p(x3 | x1, x2) · · · p(xn | x1, · · · , xn−1)

How many parameters? 1 + 2 + · · ·+ 2n−1 = 2n − 1
p(x1) requires 1 parameter
p(x2 | x1 = 0) requires 1 parameter, p(x2 | x1 = 1) requires 1 parameter
Total 2 parameters.
· · ·

2n − 1 is still exponential, chain rule does not buy us anything.
Now suppose Xi+1 ⊥ X1, . . . ,Xi−1 | Xi , then

p(x1, . . . , xn) = p(x1)p(x2 | x1)p(x3 |��x1, x2) · · · p(xn |����x1, · · · ,xn−1)

= p(x1)p(x2 | x1)p(x3 | x2) · · · p(xn | xn−1)

How many parameters? 2n − 1. Exponential reduction!
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Structure through conditional independence

Suppose we have 4 random variables X1, · · · ,X4

Using Chain Rule we can always write

p(x1, . . . , x4) = p(x1)p(x2 | x1)p(x3 | x1, x2)p(x4 | x1, x2, x3)

If X4 ⊥ X2 | {X1,X3}, we can simplify as

p(x1, . . . , xn) = p(x1)p(x2 | x1)p(x3 | x1, x2)p(x4 | x1,��x2, x3)

Using Chain Rule with a different ordering we can always also write

p(x1, . . . , x4) = p(x4)p(x3 | x4)p(x2 | x3, x4)p(x1 | x2, x3, x4)

If X1 ⊥ {X2,X3} | X4, we can simplify as

p(x1, . . . , x4) = p(x4)p(x3 | x4)p(x2 | x3, x4)p(x1 |���x2, x3, x4)

Bayesian Networks: assume an ordering and a set of conditional
independencies to get compact representation
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Bayes Network: General Idea

Use conditional parameterization (instead of joint parameterization)

For each random variable Xi , specify p(xi |xAi
) for set XAi

of random
variables

Then get joint parametrization as

p(x1, . . . , xn) =
∏
i

p(xi |xAi
)

Need to guarantee it is a legal probability distribution. It has to
correspond to a chain rule factorization, with factors simplified due to
assumed conditional independencies
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Bayesian networks

A Bayesian network is specified by a directed acyclic graph
G = (V ,E ) with:

1 One node i ∈ V for each random variable Xi

2 One conditional probability distribution (CPD) per node, p(xi | xPa(i)),
specifying the variable’s probability conditioned on its parents’ values

Graph G = (V ,E ) is called the structure of the Bayesian Network

Defines a joint distribution:

p(x1, . . . xn) =
∏
i∈V

p(xi | xPa(i))

Claim: p(x1, . . . xn) is a valid probability distribution

Economical representation: exponential in |Pa(i)|, not |V |
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Example

DAG stands for Directed Acyclic Graph
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Example

Consider the following Bayesian network:

What is its joint distribution?

p(x1, . . . xn) =
∏
i∈V

p(xi | xPa(i))

p(d , i , g , s, l) = p(d)p(i)p(g | i , d)p(s | i)p(l | g)
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Bayesian network structure implies conditional
independencies!

The joint distribution corresponding to the above BN factors as

p(d , i , g , s, l) = p(d)p(i)p(g | i , d)p(s | i)p(l | g)

However, by the chain rule, any distribution can be written as

p(d , i , g , s, l) = p(d)p(i | d)p(g | i , d)p(s | i , d , g)p(l | g , d , i , s)

Thus, we are assuming the following extra independencies:
D ⊥ I , S ⊥ {D,G} | I , L ⊥ {I ,D,S} | G .
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Summary

Bayesian networks given by (G ,P) where P is specified as a set of
local conditional probability distributions associated with G ’s nodes

Efficient representation using a graph-based data structure

Computing the probability of any assignment is obtained by
multiplying CPDs

Can identify some conditional independence properties by looking at
graph properties

Next: generative vs. discriminative; functional parameterizations
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Lecture Outline

1 Representing probability distributions

Multi-variate probability distributions and conditional independence
Bayesian networks

2 Discriminative vs. generative models

Naive Bayes vs. Logistic Regression
Bayesian networks

3 Neural networks
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Naive Bayes for single label prediction

Classify e-mails as spam (Y = 1) or not spam (Y = 0)

Let 1 : n index the words in our vocabulary (e.g., English)
Xi = 1 if word i appears in an e-mail, and 0 otherwise
E-mails are drawn according to some distribution p(Y ,X1, . . . ,Xn)

Words are conditionally independent given Y :

Then

p(y , x1, . . . xn) = p(y)
n∏

i=1

p(xi | y)
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Example: naive Bayes for classification

Classify e-mails as spam (Y = 1) or not spam (Y = 0)

Let 1 : n index the words in our vocabulary (e.g., English)
Xi = 1 if word i appears in an e-mail, and 0 otherwise
E-mails are drawn according to some distribution p(Y ,X1, . . . ,Xn)

Suppose that the words are conditionally independent given Y . Then,

p(y , x1, . . . xn) = p(y)
n∏

i=1

p(xi | y)

Estimate parameters from data. Predict with Bayes rule:

p(Y = 1 | x1, . . . xn) =
p(Y = 1)

∏n
i=1 p(xi | Y = 1)∑

y={0,1} p(Y = y)
∏n

i=1 p(xi | Y = y)

Are the independence assumptions made here reasonable? Nearly all
probabilistic models are “wrong”, but many are nonetheless useful
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Discriminative models

Using chain rule p(Y ,X) = p(X | Y )p(Y ) = p(Y | X)p(X).
Corresponding Bayesian networks:

However, suppose all we need for prediction is p(Y | X)

In the left model, we need to specify/learn both p(Y ) and p(X | Y ),
then compute p(Y | X) via Bayes rule
In the right model, it suffices to estimate just the conditional
distribution p(Y | X)

We never need to model/learn/use p(X)!
Called a discriminative model because it is only useful for
discriminating Y ’s label when given X
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Discriminative versus generative models

Since X is a random vector, chain rules will give

p(Y ,X) = p(Y )p(X1 | Y )p(X2 | Y ,X1) · · · p(Xn | Y ,X1, · · · ,Xn−1)
p(Y ,X) = p(X1)p(X2 | X1)p(X3 | X1,X2) · · · p(Y | X1, · · · ,Xn−1,Xn)

We must make the following choices:

1 In the generative model, p(Y ) is simple, but how do we parameterize
p(Xi | Xpa(i),Y )?

2 In the discriminative model, how do we parameterize p(Y | X)? Here
we assume we don’t care about modeling p(X) because X is always
given to us in a classification problem
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Naive Bayes

1 For the generative model, assume that Xi ⊥ X−i | Y (naive Bayes)
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Logistic regression

1 For the discriminative model, assume that

p(Y = 1 | x;α) = f (x,α)

2 Not represented as a table anymore. It is a parameterized function of
x (regression)

Has to be between 0 and 1
Depend in some simple but reasonable way on x1, · · · , xn
Completely specified by a vector α of n + 1 parameters (compact
representation)

Linear dependence: let z(α, x) = α0 +
∑n

i=1 αixi .Then,
p(Y = 1 | x;α) = σ(z(α, x)), where σ(z) = 1/(1 + e−z) is called the
logistic function:

z

1

1 + e−z
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Logistic regression

Linear dependence: let z(α, x) = α0 +
∑n

i=1 αixi .Then,
p(Y = 1 | x;α) = σ(z(α, x)), where σ(z) = 1/(1 + e−z) is called the
logistic function

1 Decision boundary p(Y = 1 | x;α) > 0.5 is linear in x

2 Equal probability contours are straight lines

3 Probability rate of change has very specific form (third plot)
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Discriminative models are powerful

Logistic model does not assume Xi ⊥ X−i | Y , unlike naive Bayes

This can make a big difference in many applications

For example, in spam classification, let X1 = 1[“bank” in e-mail] and
X2 = 1[“account” in e-mail]

Regardless of whether spam, these always appear together, i.e. X1 = X2

Learning in naive Bayes results in p(X1 | Y ) = p(X2 | Y ). Thus, naive Bayes
double counts the evidence

Learning with logistic regression sets α1 = 0 or α2 = 0, in effect ignoring it
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Generative models are still very useful

Using chain rule p(Y ,X) = p(X | Y )p(Y ) = p(Y | X)p(X). Corresponding
Bayesian networks:

1 Using a conditional model is only possible when X is always observed

When some Xi variables are unobserved, the generative model allows us
to compute p(Y | Xevidence) by marginalizing over the unseen variables

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 2 28 / 34



Lecture Outline

1 Representing probability distributions

Multi-variate probability distributions and conditional independence
Bayesian networks

2 Discriminative vs. generative models

Naive Bayes vs. logistic regression
Which one to use?

3 Neural networks
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Neural Models

1 In discriminative models, we assume that

p(Y = 1 | x;α) = f (x,α)

2 Linear dependence:

let z(α, x) = α0 +
∑n

i=1 αixi .
p(Y = 1 | x;α) = σ(z(α, x)), where σ(z) = 1/(1 + e−z) is the
logistic function
Dependence might be too simple

3 Non-linear dependence: let h(A,b, x) = g(Ax + b) be a non-linear
transformation of the inputs (features).

pNeural(Y = 1 | x;α,A,b) = σ(α0 +
∑h

i=1 αihi )

More flexible
More parameters: A,b,α
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Neural Models

1 In discriminative models, we assume that

p(Y = 1 | x;α) = f (x,α)

2 Linear dependence: let z(α, x) = α0 +
∑n

i=1 αixi .
p(Y = 1 | x;α) = f (z(α, x)), where f (z) = 1/(1 + e−z) is the
logistic function

Dependence might be too simple
3 Non-linear dependence: let h(A,b, x) = f (Ax + b) be a non-linear

transformation of the inputs (features).

pNeural(Y = 1 | x;α,A,b) = g(α0 +
∑h

i=1 αihi )
More flexible
More parameters: A,b,α
Can repeat multiple times to get a neural network
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Bayesian networks vs neural models

Using Chain Rule

p(x1, x2, x3, x4) = p(x1)p(x2 | x1)p(x3 | x1, x2)p(x4 | x1, x2, x3)

Fully General

Bayes Net

p(x1, x2, x3, x4) ≈ p(x1)p(x2 | x1)p(x3 |��x1, x2)p(x4 | x1,���x2, x3)

Assumes conditional independencies

Neural Models

p(x1, x2, x3, x4) ≈ p(x1)p(x2 | x1)pNeural(x3 | x1, x2)pNeural(x4 | x1, x2, x3)

Assume specific functional form for the conditionals. A sufficiently
deep neural net can approximate any function.
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Continuous variables

If X is a continuous random variable, we can usually represent it using
its probability density function pX : R→ R+. However, we cannot
represent this function as a table anymore. Typically consider
parameterized densities:

Gaussian: X ∼ N (µ, σ) if pX (x) = 1
σ
√
2π
e−(x−µ)

2/2σ2

Uniform: X ∼ U(a, b) if pX (x) = 1
b−a1[a ≤ x ≤ b]

Etc.

If X is a continuous random vector, we can usually represent it using
its joint probability density function:

Gaussian: if pX (x) = 1√
(2π)n|Σ|

exp
(
− 1

2 (x − µ)TΣ−1(x − µ)
)

Chain rule, Bayes rule, etc all still apply. For example,

pX ,Y ,Z (x , y , z) = pX (x)pY |X (y | x)pZ |{X ,Y }(z | x , y)
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Continuous variables

This means we can still use Bayesian networks with continuous (and
discrete) variables. Examples:

Mixture of 2 Gaussians: Network Z → X with factorization
pZ ,X (z , x) = pZ (z)pX |Z (x | z) and

Z ∼ Bernoulli(p)
X | (Z = 0) ∼ N (µ0, σ0) , X | (Z = 1) ∼ N (µ1, σ1)
The parameters are p, µ0, σ0, µ1, σ1

Network Z → X with factorization pZ ,X (z , x) = pZ (z)pX |Z (x | z)
Z ∼ U(a, b)
X | (Z = z) ∼ N (z , σ)
The parameters are a, b, σ

Variational autoencoder: Network Z → X with factorization
pZ ,X (z , x) = pZ (z)pX |Z (x | z) and

Z ∼ N (0, 1)
X | (Z = z) ∼ N (µθ(z), eσφ(z)) where µθ : R→ R and σφ are neural
networks with parameters (weights) θ, φ respectively
Note: Even if µθ, σφ are deep nets, functional form is Gaussian
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