
Autoregressive Models

Volodymyr Kuleshov

Cornell Tech

Lecture 3

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 3 1 / 39



Learning a generative model

We are given a training set of examples, e.g., images of dogs

We want to learn a probability distribution p(x) over images x such that

1 Generation: If we sample xnew ∼ p(x), xnew should look like a dog
(sampling)

2 Density estimation: p(x) should be high if x looks like a dog, and low
otherwise (anomaly detection)

3 Unsupervised representation learning: We should be able to learn
what these images have in common, e.g., ears, tail, etc. (features)

1st question: how to represent p(x). 2nd question: how to learn it.
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Announcements

Hangouts for office hours link is posted on website.

First occupied slots for the presentations have been posted on the
website.

Piazza is up.

Assignment will be posted online by 5pm today.

We are in the process of figuring out if we can get a half-time TA.
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Recap: Bayesian networks vs neural models

Using Chain Rule

p(x1, x2, x3, x4) = p(x1)p(x2 | x1)p(x3 | x1, x2)p(x4 | x1, x2, x3)

Fully General, no assumptions needed (exponential size, no free lunch)

Bayes Net

p(x1, x2, x3, x4) ≈ pCPT(x1)pCPT(x2 | x1)pCPT(x3 |��x1, x2)pCPT(x4 | x1,���x2, x3)

Assumes conditional independencies; tabular representations via conditional
probability tables (CPT)

Neural Models

p(x1, x2, x3, x4) ≈ p(x1)p(x2 | x1)pNeural(x3 | x1, x2)pNeural(x4 | x1, x2, x3)

Assumes specific functional form for the conditionals. A sufficiently deep
neural net can approximate any function.
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Lecture Outline

1 Neural models for classification

Fully visible sigmoid belief networks
Neural autoregressive density estimation
Masked autoencoders

2 Recurrent neural networks as autoregressive models

3 Modern autoregressive models

PixelRNN, PixelCNN
WaveNet
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Neural Models for classification

Setting: binary classification of Y ∈ {0, 1} given input features X ∈ {0, 1}n

For classification, we care about p(Y | x), and assume that

p(Y = 1 | x;α) = f (x,α)

Logistic regression: let z(α, x) = α0 +
∑n

i=1 αixi .
plogit(Y = 1 | x;α) = σ(z(α, x)), where σ(z) = 1/(1 + e−z)

Non-linear dependence: let h(A,b, x) be a non-linear transformation of the

input features. pNeural(Y = 1 | x;α,A,b) = σ(α0 +
∑h

i=1 αihi )

More flexible
More parameters: A,b,α
Repeat to get a multilayer perceptron (neural network)
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Motivating Example: MNIST

Given: a dataset D of handwritten digits (binarized MNIST)

Each image has n = 28× 28 = 784 pixels. Each pixel can either be
black (0) or white (1).

Goal: Learn a probability distribution p(x) = p(x1, · · · , x784) over
x ∈ {0, 1}784 such that when x ∼ p(x), x looks like a digit

Two step process:
1 Parameterize a model family {pθ(x), θ ∈ Θ} [This lecture]
2 Search for model parameters θ based on training data D [Next lecture]
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Autoregressive Models

We can pick an ordering of all the random variables, i.e., raster scan
ordering of pixels from top-left (X1) to bottom-right (Xn=784)

Without loss of generality, we can use chain rule for factorization

p(x1, · · · , x784) = p(x1)p(x2 | x1)p(x3 | x1, x2) · · · p(xn | x1, · · · , xn−1)

Some conditionals are too complex to be stored in tabular form. Instead, we
assume

p(x1, · · · , x784) = pCPT(x1;α1)plogit(x2 | x1;α2)plogit(x3 | x1, x2;α3) · · ·
plogit(xn | x1, · · · , xn−1;αn)

More explicitly

pCPT(X1 = 1;α1) = α1, p(X1 = 0) = 1− α1

plogit(X2 = 1 | x1;α2) = σ(α2
0 + α2

1x1)
plogit(X3 = 1 | x1, x2;α3) = σ(α3

0 + α3
1x1 + α3

2x2)

Note: This is a modeling assumption. We are using parameterized
functions (e.g., logistic regression above) to predict next pixel given all the
previous ones. Called autoregressive model.
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Fully Visible Sigmoid Belief Network (FVSBN)

The conditional variables Xi | X1, · · · ,Xi−1 are Bernoulli with parameters

x̂i = p(Xi = 1|x1, · · · , xi−1;αi ) = p(Xi = 1|x<i ;α
i ) = σ(αi

0 +
i−1∑
j=1

αi
jxj)

How to evaluate p(x1, · · · , x784)? Multiply all the conditionals (factors)

In the above example:

p(X1 = 0,X2 = 1,X3 = 1,X4 = 0) = (1− x̂1)× x̂2 × x̂3 × (1− x̂4)

= (1− x̂1)× x̂2(X1 = 0)× x̂3(X1 = 0,X2 = 1)× (1− x̂4(X1 = 0,X2 = 1,X3 = 1))
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Fully Visible Sigmoid Belief Network (FVSBN)

The conditional variables Xi | X1, · · · ,Xi−1 are Bernoulli with parameters

x̂i = p(Xi = 1|x1, · · · , xi−1;αi ) = p(Xi = 1|x<i ;α
i ) = σ(αi

0 +
i−1∑
j=1

αi
jxj)

How to sample from p(x1, · · · , x784)?

1 Sample x1 ∼ p(x1) (np.random.choice([1,0],p=[x̂1, 1− x̂1]))
2 Sample x2 ∼ p(x2 | x1 = x1)
3 Sample x3 ∼ p(x3 | x1 = x1, x2 = x2) · · ·

How many parameters? 1 + 2 + 3 + · · ·+ n ≈ n2/2
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FVSBN Results

Training data on the left (Caltech 101 Silhouettes). Samples from the
model on the right.
Figure from Learning Deep Sigmoid Belief Networks with Data
Augmentation, Gan et al. 2015.
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NADE: Neural Autoregressive Density Estimation

To improve model: use one layer neural network instead of logistic regression

hi = σ(Aix<i + ci )

x̂i = p(xi |x1, · · · , xi−1;Ai , ci ,αi , bi︸ ︷︷ ︸
parameters

) = σ(αihi + bi )

For example h2 = σ

( ...

)
︸︷︷︸
A2

x1 +
(

...

)
︸︷︷︸
c2

 h3 = σ

( ...
...

)
︸ ︷︷ ︸

A3

( x1
x2 ) +

(
...

)
︸︷︷︸
c3
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NADE: Neural Autoregressive Density Estimation

Tie weights to reduce the number of parameters and speed up computation
(see blue dots in the figure):

hi = σ(W·,<ix<i + c)

x̂i = p(xi |x1, · · · , xi−1) = σ(αihi + bi )

For example h2 = σ
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If hi ∈ Rd , how many total parameters? Linear in n: weights W ∈ Rd×n,
biases c ∈ Rd , and n logistic regression coefficient vectors αi , bi ∈ Rd+1.
Probability is evaluated in O(nd).
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NADE: Neural Autoregressive Density Estimation

For example h2 = σ
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NADE results

Samples on the left. Conditional probabilities x̂i on the right.
Figure from The Neural Autoregressive Distribution Estimator, 2011.
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General discrete distributions

How to model non-binary discrete random variables Xi ∈ {1, · · · ,K}? E.g., pixel
intensities varying from 0 to 255
One solution: Let x̂ i parameterize a categorical distribution

hi = σ(W·,<ix<i + c)

p(xi |x1, · · · , xi−1) = Cat(p1
i , · · · , pK

i )

x̂ i = (p1
i , · · · , pK

i ) = softmax(Xihi + bi )

Softmax generalizes the sigmoid/logistic function σ(·) and transforms a vector of
K numbers into a vector of K probabilities (non-negative, sum to 1).

softmax(a) = softmax(a1, · · · , aK ) =

(
exp(a1)∑
i exp(ai )

, · · · , exp(aK )∑
i exp(ai )

)
In numpy: np.exp(a)/np.sum(np.exp(a))
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RNADE

How to model continuous random variables Xi ∈ R? E.g., speech signals
Solution: let x̂ i parameterize a continuous distribution
E.g., uniform mixture of K Gaussians
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RNADE

How to model continuous random variables Xi ∈ R? E.g., speech signals
Solution: let x̂ i parameterize a continuous distribution
E.g., In a mixture of K Gaussians,

p(xi |x1, · · · , xi−1) =
K∑
j=1

1

K
N (xi ;µ

j
i , σ

j
i )

hi = σ(W·,<ix<i + c)

x̂ i = (µ1
i , · · · , µK

i , σ
1
i , · · · , σK

i ) = f (hi )

x̂ i defines the mean and stddev of each Gaussian (µj
i , σ

j
i ). Can use exponential

exp(·) to ensure stddev is positive
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Autoregressive models vs. autoencoders

On the surface, FVSBN and NADE look similar to an autoencoder:

an encoder e(·). E.g., e(x) = σ(W 2(W 1x + b1) + b2)

a decoder such that d(e(x)) ≈ x . E.g., d(h) = σ(Vh + c).

Loss function
Binary r.v.: min

W 1,W 2,b1,b2,V ,c

∑
x∈D

∑
i

−xi log x̂i − (1 − xi ) log(1 − x̂i )

Continuous r.v.: min
W 1,W 2,b1,b2,V ,c

∑
x∈D

∑
i

(xi − x̂i )
2

e and d are constrained so that we don’t learn identity mappings. Hope that
e(x) is a meaningful, compressed representation of x (feature learning)

A vanilla autoencoder is not a generative model: it does not define a
distribution over x we can sample from to generate new data points.
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Autoregressive autoencoders

On the surface, FVSBN and NADE look similar to an autoencoder. Can we
get a generative model from an autoencoder?

We need to make sure it corresponds to a valid Bayesian Network (DAG
structure), i.e., we need an ordering. If the ordering is 1, 2, 3, then:

x̂1 cannot depend on any input x . Then at generation time we don’t
need any input to get started
x̂2 can only depend on x1
· · ·

Bonus: we can use a single neural network (with n outputs) to produce all
the parameters. In contrast, NADE requires n passes. Much more efficient
on modern hardware.
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MADE: Masked Autoencoder for Distribution Estimation

1 Challenge: An autoencoder that is autoregressive (DAG structure)

2 Solution: use masks to disallow certain paths (Germain et al., 2015).
Suppose ordering is x2, x3, x1.

1 The unit producing the parameters for p(x2) is not allowed to depend
on any input. Unit for p(x3|x2) only on x2. And so on...

2 For each unit in a hidden layer, pick an integer i in [1, n − 1]. That
unit is allowed to depend only on the first i inputs (according to the
chosen ordering).

3 Add mask to preserve this invariant: connect to all units in previous
layer with smaller or equal assigned number (strictly < in final layer)
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Lecture Outline

1 Neural models for classification

Fully visible sigmoid belief networks
Neural autoregressive density estimation
Masked autoencoders

2 Recurrent neural networks as autoregressive models

3 Modern autoregressive models

PixelRNN, PixelCNN
WaveNet
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RNN: Recurrent Neural Nets

Challenge: model p(xt |x1:t−1;αt). “History” x1:t−1 keeps getting longer.
Idea: keep a summary and recursively update it

Summary update rule: ht+1 = tanh(Whhht + Wxhxt+1)

Prediction: ot+1 = Whyht+1

Summary initalization: h0 = b0

1 Hidden layer ht is a summary of the inputs seen till time t
2 Output layer ot−1 specifies parameters for conditional p(xt | x1:t−1)
3 Parameterized by b0 (initialization), and matrices Whh,Wxh,Why .

Constant number of parameters w.r.t n!
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Example: Character RNN (from Andrej Karpathy)

1 Suppose xi ∈ {h, e, l , o}. Use one-hot encoding:
h encoded as [1, 0, 0, 0], e encoded as [0, 1, 0, 0], etc.

2 Autoregressive: p(x = hello) = p(x1 = h)p(x2 = e|x1 = h)p(x3 =
l |x1 = h, x2 = e) · · · p(x5 = o|x1 = h, x2 = e, x3 = l , x4 = l)

3 For example,

p(x2 = e|x1 = h) = softmax(o1) =
exp(2.2)

exp(1.0) + · · ·+ exp(4.1)

o1 = Whyh1

h1 = tanh(Whhh0 + Wxhx1)
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RNN: Recurrent Neural Nets

Pros:

1 Can be applied to sequences of arbitrary length.

2 Very general: For every computable function, there exists a finite
RNN that can compute it

Cons:

1 Still requires an ordering

2 Sequential likelihood evaluation (very slow for training)

3 Sequential generation (unavoidable in an autoregressive model)

4 Can be difficult to train (vanishing/exploding gradients)
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Example: Character RNN (from Andrej Karpathy)

Train 3-layer RNN with 512 hidden nodes on all the works of Shakespeare.
Then sample from the model:

KING LEAR: O, if you were a feeble sight, the courtesy of your law,
Your sight and several breath, will wear the gods
With his heads, and my hands are wonder’d at the deeds,
So drop upon your lordship’s head, and your opinion
Shall be against your honour.

Note: generation happens character by character. Needs to learn valid
words, grammar, punctuation, etc.
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Example: Character RNN (from Andrej Karpathy)

Train on Wikipedia. Then sample from the model:

Naturalism and decision for the majority of Arab countries’ capitalide was
grounded by the Irish language by [[John Clair]], [[An Imperial Japanese
Revolt]], associated with Guangzham’s sovereignty. His generals were
the powerful ruler of the Portugal in the [[Protestant Immineners]], which
could be said to be directly in Cantonese Communication, which followed
a ceremony and set inspired prison, training. The emperor travelled
back to [[Antioch, Perth, October 25—21]] to note, the Kingdom of
Costa Rica, unsuccessful fashioned the [[Thrales]], [[Cynth’s Dajoard]],
known in western [[Scotland]], near Italy to the conquest of India with
the conflict.

Note: correct Markdown syntax. Opening and closing of brackets [[·]]
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Example: Character RNN (from Andrej Karpathy)

Train on Wikipedia. Then sample from the model:

{ { cite journal — id=Cerling Nonforest Depart-
ment—format=Newlymeslated—none } }
”www.e-complete”.
”’See also”’: [[List of ethical consent processing]]

== See also ==
*[[Iender dome of the ED]]
*[[Anti-autism]]

== External links==
* [http://www.biblegateway.nih.gov/entrepre/ Website of the World
Festival. The labour of India-county defeats at the Ripper of California
Road.]
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Example: Character RNN (from Andrej Karpathy)

Train on data set of baby names. Then sample from the model:

Rudi Levette Berice Lussa Hany Mareanne Chrestina Carissy Marylen
Hammine Janye Marlise Jacacrie Hendred Romand Charienna Nenotto
Ette Dorane Wallen Marly Darine Salina Elvyn Ersia Maralena Minoria El-
lia Charmin Antley Nerille Chelon Walmor Evena Jeryly Stachon Charisa
Allisa Anatha Cathanie Geetra Alexie Jerin Cassen Herbett Cossie Ve-
len Daurenge Robester Shermond Terisa Licia Roselen Ferine Jayn Lusine
Charyanne Sales Sanny Resa Wallon Martine Merus Jelen Candica Wallin
Tel Rachene Tarine Ozila Ketia Shanne Arnande Karella Roselina Alessia
Chasty Deland Berther Geamar Jackein Mellisand Sagdy Nenc Lessie
Rasemy Guen Gavi Milea Anneda Margoris Janin Rodelin Zeanna Elyne
Janah Ferzina Susta Pey Castina
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Lecture Outline

1 Neural models for classification

Fully visible sigmoid belief networks
Neural autoregressive density estimation
Masked autoencoders

2 Recurrent neural networks as autoregressive models

3 Modern autoregressive models

PixelRNN, PixelCNN
WaveNet
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Pixel RNN (Oord et al., 2016)

1 Model images pixel by pixel using raster scan order

2 Each pixel conditional p(xt | x1:t−1) needs to specify 3 colors

p(xt | x1:t−1) = p(x red
t | x1:t−1)p(x

green
t | x1:t−1, x

red
t )p(xblue

t | x1:t−1, x
red
t , xgreen

t )

and each conditional is a categorical random variable with 256 possible
values

3 Conditionals modeled using RNN variants. LSTMs + masking (like MADE)
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Pixel RNN

Results on downsampled ImageNet. Very slow: sequential likelihood
evaluation.
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Convolutional Architectures

Convolutions are natural for image data and easy to parallelize on modern
hardware.
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PixelCNN (Oord et al., 2016)

Idea: Use convolutional architecture to predict next pixel given context (a
neighborhood of pixels).
Challenge: Has to be autoregressive. Masked convolutions preserve raster scan
order. Additional masking for colors order.
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PixelCNN

Samples from the model trained on Imagenet (32× 32 pixels). Similar
performance to PixelRNN, but much faster.
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Application in Adversarial Attacks and Anomaly detection

Machine learning methods are vulnerable to adversarial examples

Can we detect them?
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PixelDefend (Song et al., 2018)

Train a generative model p(x) on clean inputs (PixelCNN)

Given a new input x , evaluate p(x)

Adversarial examples are significantly less likely under p(x)
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WaveNet (Oord et al., 2016)

State of the art model for speech:

Dilated convolutions increase the receptive field: kernel only touches the
signal at every 2d entries.
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Summary of Autoregressive Models

Easy to sample from
1 Sample x0 ∼ p(x0)
2 Sample x1 ∼ p(x1 | x0 = x0)
3 · · ·

Easy to compute probability p(x = x)
1 Compute p(x0 = x0)
2 Compute p(x1 = x1 | x0 = x0)
3 Multiply together (sum their logarithms)
4 · · ·
5 Ideally, can compute all these terms in parallel for fast training

Easy to extend to continuous variables. For example, can choose
Gaussian conditionals p(xt | x<t) = N (µθ(x<t),Σθ(x<t)) or mixture
of logistics

No natural way to get features, cluster points, do unsupervised
learning

Next: learning
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