Maximum Likelihood Learning

Volodymyr Kuleshov
Cornell Tech

Lecture 4

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 4 1/41

Announcements

@ Assignment is up and is due 2 weeks from now.

@ Please ask any questions on Piazza.

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 4 2/41

Learning a generative model

@ We are given a training set of examples, e.g., images of dogs

d(P gatar Po)

Pdata

6eM

Model family

@ We want to learn a probability distribution p(x) over images x such that

o Generation: If we sample x,en ~ p(x), Xnew should look like a dog
(sampling)

o Density estimation: p(x) should be high if x looks like a dog, and low
otherwise (anomaly detection)

o Unsupervised representation learning: We should be able to learn
what these images have in common, e.g., ears, tail, etc. (features)

@ First question: how to represent py(x). Second question: how to learn it.

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 4 3/41

Lecture Outline

@ Wrap-up of modern autoregressive models

o PixelRNN, PixelCNN
o WaveNet

@ Learning as density estimation
© Density estimation as optimization

o Monte Carlo estimation
o Gradient descent

@ Statistical issues and the bias/variance tradeoff

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 4 4/41

Pixel RNN (Oord et al., 2016)

@ Model images pixel by pixel using raster scan order

@ Each pixel conditional p(x; | x1.:—1) needs to specify 3 colors

green

p(xe | xue-1) = p(x{™ | x1:-1)p(xf ple <, xEeen)

| X1, P(x™ | xaie—1, 3%, xE

and each conditional is a categorical random variable with 256 possible
values

© Conditionals modeled using RNN variants. LSTMs + masking (like MADE)

P(Xt | X1:t—1) = P(Xt | htflvxtfl) hy = f(htflvxtfl)

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 4 5/41

Pixel RNN

occluded completions original

Results on downsampled ImageNet. Very slow: sequential likelihood
evaluation.

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 4 6/41

Convolutional Architectures

Convolutions are natural for image data and easy to parallelize on modern
hardware.

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 4 7/41

PixelCNN (Oord et al., 2

Idea: Use convolutional architecture to predict next pixel given context (a
neighborhood of pixels).

P(Xt | Xl:t—l) = P(Xt I Xneighborhood) = ConV(Xneighborhood)

Challenge: Has to be autoregressive. Soln: Mask future pixels in conv filter.

t

B @‘d -

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 4 8/41

Pixel CNN

Samples from the model trained on Imagenet (32 x 32 pixels). Similar
performance to PixelRNN, but much faster.

Volodymyr Kuleshov (Cornell Tech)

WaveNet (Oord et al., 2016)

State of the art model for speech:

Output
Dilation = 8

Hidden Layer
Dilation = 4

Hidden Layer
Dilation = 2

Hidden Layer
Dilation = 1

Input

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 4

Causal Convolutions

Regular convolutions (top) use filters that touch symmetrical input region.

HENEEEEEEEE RN
- AMAAA
L0 O O O 0 0 0
L OO B O 0O L
 Addddddd
(o] (o} [0 OO0 000) [
Causal convolutions (bottom) mask part of filter that touches the future.

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 4 11/41

Dilated Convolutions

Dilated convolutions introduce " holes” into the convolution filters:

(2] {b) 4]

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 4 12 /41

Dilated Convolutions

Normal convolutions in Wavenet would look like this:
Non dilated Causal Convolutions

. /]

es
e
SV

Dilated convolutions increase the receptive field: kernel only touches the
signal at every 29 entries.

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 4 13 /41

WaveNet (Oord et al., 20

State of the art model for speech:

’ O OQutput

Dilation = 8

v Hidden Layer
/ Diation = 4
Q O Qo .Q Hidden Layer
: Dilation = 2
O O o Hidden Layer
’ P Dilation = 1
Input

Dilated convolutions increase the receptive field: kernel only touches the
signal at every 29 entries.

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 4 14 /41

Summary of Autoregressive Models

o Easy to sample from
@ Sample Xo ~ p(x0)
@ Sample X1 ~ p(x1 | X0 = Xo)
Q -
e Easy to compute probability p(x = X)
@ Compute p(xp = Xo)
@ Compute p(x; = X1 | Xo = Xo)
© Multiply together (sum their logarithms)
Q -

© Ideally, can compute all these terms in parallel for fast training

@ We can often construct autoregressive models by adapting
feed-forward and discriminative models using ideas such as masking.

@ Next: learning

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 4 15 /41

Lecture Outline

@ Wrap-up of modern autoregressive models

o PixelRNN, PixelCNN
o WaveNet

@ Learning as density estimation
© Density estimation as optimization

o Monte Carlo estimation
o Gradient descent

@ Statistical issues and the bias/variance tradeoff

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 4 16 /41

@ Lets assume that the domain is governed by some underlying distribution
Pdata

@ We are given a dataset D of m samples from Pgqata

o Each sample is an assignment of values to (a subset of) the variables,
e.g., (Xvank = 1, Xdotlar = 0, ..., Y = 1) or pixel intensities.

@ The standard assumption is that the data instances are independent and
identically distributed (11D)

® We are also given a family of models M, and our task is to learn some
“good” model M € M (i.e., in this family) that defines a distribution p

o For example, all Bayes nets with a given graph structure, for all
possible choices of the CPD tables

e For example, a FVSBN for all possible choices of the logistic regression
parameters. M = {Py,0 € ©}, 6 = concatenation of all logistic
regression coefficients

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 4 17 /41

Goal of learning

@ The goal of learning is to return a model M that precisely captures the
distribution Pg.a from which our data was sampled

@ This is in general not achievable because of

o limited data only provides a rough approximation of the true underlying
distribution
e computational reasons

@ Example. Suppose we represent each image with a vector X of 784 binary
variables (black vs. white pixel). How many possible states (= possible
images) in the model? 278 ~ 10%3°. Even 107 training examples provide
extremely sparse coverage!

@ We want to select M to construct the "best” approximation to the
underlying distribution Pgaa

@ What is "best”?

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 4 18 /41

This depends on what we want to do

@ Density estimation: we are interested in the full distribution (so later we can
compute whatever conditional probabilities we want)

@ Specific prediction tasks: we are using the distribution to make a prediction

e Is this email spam or not?
o Predict next frame in a video

© Structure or knowledge discovery: we are interested in the model itself

e How do some genes interact with each other?
e What causes cancer?

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 4 19 /41

Learning as density estimation

@ We want to learn the full distribution so that later we can answer any
probabilistic inference query

@ In this setting we can view the learning problem as density estimation

@ We want to construct Py as "close” as possible to Pqat. (recall we assume
we are given a dataset D of samples from Pyt)

0eM

Xi"’Pdata

i=12,..,n Model family

@ How do we evaluate "closeness”?

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 4 20 /41

KL-divergence

@ How should we measure distance between distributions?
@ The Kullback-Leibler divergence (KL-divergence) between two
distributions p and q is defined as

p(x)
D(pllq) = Zp a0
D(p|| q) > 0 for all p, g, with equality if and only if p = g. Proof:
(O a1~ ax)) _
Exp { 8 p(x)} = o (E*”" [p(x>D 8 (Z p(x) p(x)>

o Notice that KL-divergence is asymmetric, i.e., D(p||q) # D(q||p)

@ Measures the expected number of extra bits required to describe
samples from p(x) using a code based on ¢ instead of p

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 4 21 /41

Learning as density estimation

@ We want to learn the full distribution so that later we can answer any
probabilistic inference query

@ In this setting we can view the learning problem as density estimation

@ We want to construct Py as "close” as possible to Pgata (recall we assume
we are given a dataset D of samples from Pgat.)

@ How do we evaluate "closeness” ?

@ KL-divergence is one possibility:

P X X
D(PdataHPG) = Exup,,.. {Iog (dpa:ax))):| Z Pdata Iog dPE;t(a;E))

® D(P4atal|Po) = 0 iff the two distributions are the same.

@ It measures the "compression loss” (in bits) of using Py instead of Pgata.

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 4 22 /41

Expected log-likelihood

@ We can simplify this somewhat:

D(PaatallPo) = Ex~Piua ['°g (Wﬂ

= Bxpyaa [108 Paasa(X)] — Exwpy,. [log Po(x)]

@ The first term does not depend on Py.

@ Then, minimizing KL divergence is equivalent to maximizing the expected
log-likelihood

arg n;in D(Paatal|Po) = arg n;in —Ex~p,,,, [log Po(x)] = arg max Ex~pg... [log Ps(x)]
] 0 6

o Asks that Py assign high probability to instances sampled from Pgqaga,
so as to reflect the true distribution
o Because of log, samples x where Py(x) = 0 weigh heavily in objective

@ Although we can now compare models, since we are ignoring H(Pqata), We
don’t know how close we are to the optimum

@ Problem: In general we do not know Pgqata.

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 4 23 /41

Monte Carlo Estimation

@ Express the quantity of interest as the expected value of a random
variable.

Ecerlg(x)] =D g(x)P(x)

@ Generate T samples x!,...,x" from the distribution P with respect
to which the expectation was taken.

© Estimate the expected value from the samples using:
1L
Ar 1 Ty & t
g(X ytr X)_th_;g()()

where x!, ..., xT are independent samples from P. Note: g is a
random variable. Why?

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 4 24 /41

Properties of the Monte Carlo Estimate

@ Unbiased:
Ep[g] = Ep[g(x)]

e Convergence: By law of large numbers

-
g= %Zg(xt) — Eplg(x)] for T — o0
t=1
@ Variance:
-
Velg] = Vp ;;g(xt) = VP[?_(X)]

Thus, variance of the estimator can be reduced by increasing the
number of samples.

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 4 25 /41

Maximum likelihood estimation

@ Approximate the expected log-likelihood

ExPaaca [108 Po(x)]

with the empirical log-likelihood:

Ep [log Py(x)] = % Z log Py(x)

@ Maximum likelihood learning is then:

1
max D] E og Py(x)

@ Equivalently, maximize probability of the data under model
Po(x(), ... x(m) = [Lep Po(x)

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 4 26 /41

Single variable example: A biased coin
e Two outcomes: heads (H) and tails (T)
@ Data set: Tosses of the biased coin, e.g., D={H,H, T,H, T}

@ Assumption: the process is controlled by a probability distribution
Pdata(x) where x € {H, T}

o Class of models M: Bernoulli distributions over x € {H, T}.

e Example learning task: How should we choose Py(x) from M if 60
out of 100 tosses are heads in D7

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 4 27 /41

MLE scoring for the coin example

We represent our model: Pyg(x = H) =60 and Py(x=T)=1—-16
e Example data: D={H,H, T,H, T}
o Likelihood of data = [[; Pg(xi) =0-0-(1—6)-0-(1—6)

L(6:D)

0 0.2 0.4 0.6 0.8 1
2]

@ Optimize for 8 which makes D most likely. What is the solution in
this case?
Lecture 4 28 /41

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models

MLE scoring for the coin example: Analytical derivation

Distribution: Pg(x = H) =6 and Pg(x=T)=1-146

@ More generally, log-likelihood function

L(0) — e#heads . (1 . 9)#tails
IOg L(H) — |Og(9#heads . (1 . 9)#1“31'/5)
= #heads - log(8) + #tails - log(1 — 6)

e MLE Goal: Find 6* € [0, 1] such that log L(6*) is maximum.

o Differentiate the log-likelihood function with respect to 6 and set the
derivative to zero. We get:

heads

0" =
#heads + #tails

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 4 29 /41

Extending the MLE principle to a Bayesian network

Given an autoregressive model with n variables and factorization

— Hp(x,-|pa(x,-); 0;)

i=1
Training data D = {x(), ... x(M}. Maximum likelihood estimate of the
parameters?

@ Decomposition of Likelihood function

m n

L(6,D) Z log Po(x1)) = Z Z log p(x; |pa (x)Y); 0,
Jj=1i=1
e Goal : maximize arg maxy L(6, D) = arg maxg log L(6, D)
@ Each term is a normal conditional log-likelihood and can be optimized
independently.

@ For classical Bayes Net, conditionals are exponential families and have
closed form solutions.

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 4 30/41

Extending the MLE principle to a Neural model

Given an autoregressive model with n variables and factorization

PG(X) = H pneural(Xi|pa(Xi); 0/)

i=1

Training data D = {x() ... x(M}. Maximum likelihood estimate of the
parameters?

@ Decomposition of Likelihood function

10,0) = J[Pox) =TT TI pucurar(x?1pa(x:)?;)
j=1 j=1li=1

e Goal : maximize arg maxy L(0, D) = arg maxy log L(0, D)
@ We no longer have a closed form solution!

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 4 31/41

MLE Learning: Gradient Descent

n

L(G,D) = H HHpneural |pa)0)0)
Jj=1

j=1li=1
Goal : maximize arg maxy L(6, D) = arg maxy log L(6, D)

m n

f(@) |Og L 0, D Z Z log pneural(x |pa())

j=1i=1

@ Initialize #° at random
@ Compute Vy/(0) (by back propagation)
Q 01 =0t + a: Vpl(0)
Non-convex optimization problem, but often works well in practice

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 4 32/41

MLE Learning: Stochastic Gradient Descent

m

((0) = log L(6,D) = ZZlogpneuml 9 pa(x)1); 6;)

j=1 i=1
@ Initialize #° at random
@ Compute Vyl(8) (by back propagation)
Q 01t =0 + o, Vel(0)

m

Vol(0) = ZZVelogpneml() |pa(x))Y); 6;)

j=1 i=1
What if m = |D| is huge?

V@f(a) = mz Zv9logpneural(x |pa()J)g)

mE, xU)~D Z VO IOg pncural(|P3(X:)("), 9:)
i=1

Monte Carlo: Sample xU) ~ D; Vol(0) ~mY.!_ Vglog pncural(|pa(x,)(f), 0;)

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 4 33 /41

Parallelization in Autoregressive Models

Out objective function is:

m n

0(0) =log L(0,D) = >3 log pucural(x |pa(x)?; 0;)

j=1 i=1
If we use a recurrent neural network model, each term has the form
P(Xt | Xl:t—l) = 'D(Xt | ht—l,Xt—l) he = f(ht—laxt—1)~

Before we can evaluate and/or compute gradient, we need to process each term
sequentially.

This is why we want feed-forward models like NADE, MADE, or Pixel CNN:

P(Xt | Xl:tfl) - P(Xt | Xneighborhood) - ConV(Xneighborhood)

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 4 34 /41

Lecture Outline

@ Wrap-up of modern autoregressive models

o PixelRNN, PixelCNN
o WaveNet

@ Learning as density estimation
© Density estimation as optimization

o Monte Carlo estimation
o Gradient descent

@ Statistical issues and the bias/variance tradeoff

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 4 35/41

Empirical Risk and Overfitting

@ Empirical risk minimization can easily overfit the data
o Extreme example: The data is the model (remember all training data).

@ Generalization: the data is a sample, usually there is vast amount of samples
that you have never seen. Your model should generalize well to these
“never-seen” samples.

@ Thus, we typically restrict the hypothesis space of distributions that we
search over

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 4 36 /41

Bias-Variance trade off

@ If the hypothesis space is very limited, it might not be able to represent
Pdata, €ven with unlimited data

e This type of limitation is called bias, as the learning is limited on how
close it can approximate the target distribution

@ If we select a highly expressive hypothesis class, we might represent better
the data

o When we have small amount of data, multiple models can fit well, or
even better than the true model. Moreover, small perturbations on D
will result in very different estimates

o This limitation is call the variance.

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 4 37 /41

Bias-Variance trade off

@ There is an inherent bias-variance trade off when selecting the hypothesis
class. Error in learning due to both things: bias and variance.

@ Hypothesis space: linear relationship

y

o Does it fit well? Underfits P

@ Hypothesis space: high degree polynomial

o Overfits

@ Hypothesis space: low degree polynomial

{

o Right tradeoff

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 4 38 /41

How to avoid overfitting?

@ Hard constraints, e.g. by selecting a less expressive hypothesis class:

o Bayesian networks with at most d parents
o Smaller neural networks with less parameters
o Weight sharing

@ Soft preference for “simpler” models: Occam Razor.

@ Augment the objective function with regularization:

objective(x, M) = loss(x, M) + R(M)

@ Evaluate generalization performance on a held-out validation set.
Log-likelihood should be similar on both training and validation set if there
is no overfitting (as in discriminative modeling!)

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 4 39 /41

Conditional generative models

@ Suppose we want to generate a set of variables Y given some others
X, e.g., text to speech
@ We concentrate on modeling p(Y|X), and use a conditional loss
function
—log Py(y | x).

@ Since the loss function only depends on Py(y | x), suffices to estimate
the conditional distribution, not the joint

Brown horse in
grass field

Output: caption

Input: image

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 4 40/41

@ For autoregressive models, it is easy to compute py(x)

o Ideally, evalua_te in parallel each conditional
log preurat(x”)|pa(xi)?); 6;). Not like RNNs.

Natural to train them via maximum likelihood

Higher log-likelihood doesn't necessarily mean better looking samples

Other ways of measuring similarity are possible (Generative Adversarial
Networks, GANs)

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 4 41/41

