
Maximum Likelihood Learning

Volodymyr Kuleshov

Cornell Tech

Lecture 4

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 4 1 / 41



Announcements

Assignment is up and is due 2 weeks from now.

Please ask any questions on Piazza.
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Learning a generative model

We are given a training set of examples, e.g., images of dogs

We want to learn a probability distribution p(x) over images x such that

Generation: If we sample xnew ∼ p(x), xnew should look like a dog
(sampling)
Density estimation: p(x) should be high if x looks like a dog, and low
otherwise (anomaly detection)
Unsupervised representation learning: We should be able to learn
what these images have in common, e.g., ears, tail, etc. (features)

First question: how to represent pθ(x). Second question: how to learn it.
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Lecture Outline

1 Wrap-up of modern autoregressive models

PixelRNN, PixelCNN
WaveNet

2 Learning as density estimation

3 Density estimation as optimization

Monte Carlo estimation
Gradient descent

4 Statistical issues and the bias/variance tradeoff
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Pixel RNN (Oord et al., 2016)

1 Model images pixel by pixel using raster scan order

2 Each pixel conditional p(xt | x1:t−1) needs to specify 3 colors

p(xt | x1:t−1) = p(x red
t | x1:t−1)p(x

green
t | x1:t−1, x

red
t )p(xblue

t | x1:t−1, x
red
t , xgreen

t )

and each conditional is a categorical random variable with 256 possible
values

3 Conditionals modeled using RNN variants. LSTMs + masking (like MADE)

P(xt | x1:t−1) = P(xt | ht−1, xt−1) ht = f (ht−1, xt−1)
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Pixel RNN

Results on downsampled ImageNet. Very slow: sequential likelihood
evaluation.
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Convolutional Architectures

Convolutions are natural for image data and easy to parallelize on modern
hardware.
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PixelCNN (Oord et al., 2016)

Idea: Use convolutional architecture to predict next pixel given context (a
neighborhood of pixels).

P(xt | x1:t−1) = P(xt | xneighborhood) = conv(xneighborhood)

Challenge: Has to be autoregressive. Soln: Mask future pixels in conv filter.
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PixelCNN

Samples from the model trained on Imagenet (32× 32 pixels). Similar
performance to PixelRNN, but much faster.
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WaveNet (Oord et al., 2016)

State of the art model for speech:
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Causal Convolutions

Regular convolutions (top) use filters that touch symmetrical input region.

Causal convolutions (bottom) mask part of filter that touches the future.
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Dilated Convolutions

Dilated convolutions introduce ”holes” into the convolution filters:
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Dilated Convolutions

Normal convolutions in Wavenet would look like this:

Dilated convolutions increase the receptive field: kernel only touches the
signal at every 2d entries.
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WaveNet (Oord et al., 2016)

State of the art model for speech:

Dilated convolutions increase the receptive field: kernel only touches the
signal at every 2d entries.
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Summary of Autoregressive Models

Easy to sample from
1 Sample x0 ∼ p(x0)
2 Sample x1 ∼ p(x1 | x0 = x0)
3 · · ·

Easy to compute probability p(x = x)
1 Compute p(x0 = x0)
2 Compute p(x1 = x1 | x0 = x0)
3 Multiply together (sum their logarithms)
4 · · ·
5 Ideally, can compute all these terms in parallel for fast training

We can often construct autoregressive models by adapting
feed-forward and discriminative models using ideas such as masking.

Next: learning
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Lecture Outline

1 Wrap-up of modern autoregressive models

PixelRNN, PixelCNN
WaveNet

2 Learning as density estimation

3 Density estimation as optimization

Monte Carlo estimation
Gradient descent

4 Statistical issues and the bias/variance tradeoff
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Setting

Lets assume that the domain is governed by some underlying distribution
Pdata

We are given a dataset D of m samples from Pdata

Each sample is an assignment of values to (a subset of) the variables,
e.g., (Xbank = 1,Xdollar = 0, ...,Y = 1) or pixel intensities.

The standard assumption is that the data instances are independent and
identically distributed (IID)

We are also given a family of models M, and our task is to learn some
“good” model M̂ ∈ M (i.e., in this family) that defines a distribution pM̂

For example, all Bayes nets with a given graph structure, for all
possible choices of the CPD tables
For example, a FVSBN for all possible choices of the logistic regression
parameters. M = {Pθ, θ ∈ Θ}, θ = concatenation of all logistic
regression coefficients
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Goal of learning

The goal of learning is to return a model M̂ that precisely captures the
distribution Pdata from which our data was sampled

This is in general not achievable because of

limited data only provides a rough approximation of the true underlying
distribution
computational reasons

Example. Suppose we represent each image with a vector X of 784 binary
variables (black vs. white pixel). How many possible states (= possible
images) in the model? 2784 ≈ 10236. Even 107 training examples provide
extremely sparse coverage!

We want to select M̂ to construct the ”best” approximation to the
underlying distribution Pdata

What is ”best”?
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What is “best”?

This depends on what we want to do

1 Density estimation: we are interested in the full distribution (so later we can
compute whatever conditional probabilities we want)

2 Specific prediction tasks: we are using the distribution to make a prediction

Is this email spam or not?
Predict next frame in a video

3 Structure or knowledge discovery: we are interested in the model itself

How do some genes interact with each other?
What causes cancer?
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Learning as density estimation

We want to learn the full distribution so that later we can answer any
probabilistic inference query

In this setting we can view the learning problem as density estimation

We want to construct Pθ as ”close” as possible to Pdata (recall we assume
we are given a dataset D of samples from Pdata)

How do we evaluate ”closeness”?
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KL-divergence

How should we measure distance between distributions?

The Kullback-Leibler divergence (KL-divergence) between two
distributions p and q is defined as

D(p‖q) =
∑

x

p(x) log
p(x)

q(x)
.

D(p ‖ q) ≥ 0 for all p, q, with equality if and only if p = q. Proof:

Ex∼p

[
− log

q(x)

p(x)

]
≥ − log

(
Ex∼p

[
q(x)

p(x)

])
= − log

(∑
x

p(x)
q(x)

p(x)

)
= 0

Notice that KL-divergence is asymmetric, i.e., D(p‖q) 6= D(q‖p)

Measures the expected number of extra bits required to describe
samples from p(x) using a code based on q instead of p

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 4 21 / 41



Learning as density estimation

We want to learn the full distribution so that later we can answer any
probabilistic inference query

In this setting we can view the learning problem as density estimation

We want to construct Pθ as ”close” as possible to Pdata (recall we assume
we are given a dataset D of samples from Pdata)

How do we evaluate ”closeness”?

KL-divergence is one possibility:

D(Pdata||Pθ) = Ex∼Pdata

[
log

(
Pdata(x)

Pθ(x)

)]
=
∑

x

Pdata(x) log
Pdata(x)

Pθ(x)

D(Pdata||Pθ) = 0 iff the two distributions are the same.

It measures the ”compression loss” (in bits) of using Pθ instead of Pdata.
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Expected log-likelihood

We can simplify this somewhat:

D(Pdata||Pθ) = Ex∼Pdata

[
log

(
Pdata(x)

Pθ(x)

)]
= Ex∼Pdata

[logPdata(x)]− Ex∼Pdata
[logPθ(x)]

The first term does not depend on Pθ.

Then, minimizing KL divergence is equivalent to maximizing the expected
log-likelihood

argmin
Pθ

D(Pdata||Pθ) = argmin
Pθ

−Ex∼Pdata [logPθ(x)] = argmax
Pθ

Ex∼Pdata [logPθ(x)]

Asks that Pθ assign high probability to instances sampled from Pdata,
so as to reflect the true distribution
Because of log, samples x where Pθ(x) ≈ 0 weigh heavily in objective

Although we can now compare models, since we are ignoring H(Pdata), we
don’t know how close we are to the optimum

Problem: In general we do not know Pdata.
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Monte Carlo Estimation

1 Express the quantity of interest as the expected value of a random
variable.

Ex∼P [g(x)] =
∑
x

g(x)P(x)

2 Generate T samples x1, . . . , xT from the distribution P with respect
to which the expectation was taken.

3 Estimate the expected value from the samples using:

ĝ(x1, · · · , xT ) ,
1

T

T∑
t=1

g(xt)

where x1, . . . , xT are independent samples from P. Note: ĝ is a
random variable. Why?
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Properties of the Monte Carlo Estimate

Unbiased:
EP [ĝ ] = EP [g(x)]

Convergence: By law of large numbers

ĝ =
1

T

T∑
t=1

g(x t)→ EP [g(x)] for T →∞

Variance:

VP [ĝ ] = VP

[
1

T

T∑
t=1

g(x t)

]
=

VP [g(x)]

T

Thus, variance of the estimator can be reduced by increasing the
number of samples.
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Maximum likelihood estimation

Approximate the expected log-likelihood

Ex∼Pdata
[logPθ(x)]

with the empirical log-likelihood:

ED [logPθ(x)] =
1

|D|
∑
x∈D

logPθ(x)

Maximum likelihood learning is then:

max
Pθ

1

|D|
∑
x∈D

logPθ(x)

Equivalently, maximize probability of the data under model
Pθ(x(1), · · · , x(m)) =

∏
x∈D Pθ(x)
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Example

Single variable example: A biased coin

Two outcomes: heads (H) and tails (T )

Data set: Tosses of the biased coin, e.g., D = {H,H,T ,H,T}
Assumption: the process is controlled by a probability distribution
Pdata(x) where x ∈ {H,T}
Class of models M: Bernoulli distributions over x ∈ {H,T}.
Example learning task: How should we choose Pθ(x) from M if 60
out of 100 tosses are heads in D?
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MLE scoring for the coin example

We represent our model: Pθ(x = H) = θ and Pθ(x = T ) = 1− θ
Example data: D = {H,H,T ,H,T}
Likelihood of data =

∏
i Pθ(xi ) = θ · θ · (1− θ) · θ · (1− θ)

Optimize for θ which makes D most likely. What is the solution in
this case?

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 4 28 / 41



MLE scoring for the coin example: Analytical derivation

Distribution: Pθ(x = H) = θ and Pθ(x = T ) = 1− θ
More generally, log-likelihood function

L(θ) = θ#heads · (1− θ)#tails

log L(θ) = log(θ#heads · (1− θ)#tails)

= #heads · log(θ) + #tails · log(1− θ)

MLE Goal: Find θ∗ ∈ [0, 1] such that log L(θ∗) is maximum.

Differentiate the log-likelihood function with respect to θ and set the
derivative to zero. We get:

θ∗ =
#heads

#heads + #tails
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Extending the MLE principle to a Bayesian network

Given an autoregressive model with n variables and factorization

Pθ(x) =
n∏

i=1

p(xi |pa(xi ); θi )

Training data D = {x(1), · · · , x(m)}. Maximum likelihood estimate of the
parameters?

Decomposition of Likelihood function

L(θ,D) =
m∑
j=1

logPθ(x(j)) =
m∑
j=1

n∑
i=1

log p(x
(j)
i |pa(xi )

(j); θi )

Goal : maximize arg maxθ L(θ,D) = arg maxθ log L(θ,D)

Each term is a normal conditional log-likelihood and can be optimized
independently.

For classical Bayes Net, conditionals are exponential families and have
closed form solutions.
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Extending the MLE principle to a Neural model

Given an autoregressive model with n variables and factorization

Pθ(x) =
n∏

i=1

pneural(xi |pa(xi ); θi )

Training data D = {x(1), · · · , x(m)}. Maximum likelihood estimate of the
parameters?

Decomposition of Likelihood function

L(θ,D) =
m∏
j=1

Pθ(x(j)) =
m∏
j=1

n∏
i=1

pneural(x
(j)
i |pa(xi )

(j); θi )

Goal : maximize arg maxθ L(θ,D) = arg maxθ log L(θ,D)

We no longer have a closed form solution!
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MLE Learning: Gradient Descent

L(θ,D) =
m∏
j=1

Pθ(x(j)) =
m∏
j=1

n∏
i=1

pneural(x
(j)
i |pa(xi )

(j); θi )

Goal : maximize arg maxθ L(θ,D) = arg maxθ log L(θ,D)

`(θ) = log L(θ,D) =
m∑
j=1

n∑
i=1

log pneural(x
(j)
i |pa(xi )

(j); θi )

1 Initialize θ0 at random

2 Compute ∇θ`(θ) (by back propagation)

3 θt+1 = θt + αt∇θ`(θ)

Non-convex optimization problem, but often works well in practice
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MLE Learning: Stochastic Gradient Descent

`(θ) = log L(θ,D) =
m∑
j=1

n∑
i=1

log pneural(x
(j)
i |pa(xi )

(j); θi )

1 Initialize θ0 at random

2 Compute ∇θ`(θ) (by back propagation)

3 θt+1 = θt + αt∇θ`(θ)

∇θ`(θ) =
m∑
j=1

n∑
i=1

∇θ log pneural(x
(j)
i |pa(xi )

(j); θi )

What if m = |D| is huge?

∇θ`(θ) = m
m∑
j=1

1

m

n∑
i=1

∇θ log pneural(x
(j)
i |pa(xi )

(j); θi )

= mEx (j)∼D

[
n∑

i=1

∇θ log pneural(x
(j)
i |pa(xi )

(j); θi )

]

Monte Carlo: Sample x (j) ∼ D;∇θ`(θ) ≈ m
∑n

i=1∇θ log pneural(x
(j)
i |pa(xi )

(j); θi )
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Parallelization in Autoregressive Models

Out objective function is:

`(θ) = log L(θ,D) =
m∑
j=1

n∑
i=1

log pneural(x
(j)
i |pa(xi )

(j); θi )

If we use a recurrent neural network model, each term has the form

P(xt | x1:t−1) = P(xt | ht−1, xt−1) ht = f (ht−1, xt−1).

Before we can evaluate and/or compute gradient, we need to process each term
sequentially.
This is why we want feed-forward models like NADE, MADE, or PixelCNN:

P(xt | x1:t−1) = P(xt | xneighborhood) = conv(xneighborhood)

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 4 34 / 41



Lecture Outline

1 Wrap-up of modern autoregressive models

PixelRNN, PixelCNN
WaveNet

2 Learning as density estimation

3 Density estimation as optimization

Monte Carlo estimation
Gradient descent

4 Statistical issues and the bias/variance tradeoff
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Empirical Risk and Overfitting

Empirical risk minimization can easily overfit the data

Extreme example: The data is the model (remember all training data).

Generalization: the data is a sample, usually there is vast amount of samples
that you have never seen. Your model should generalize well to these
“never-seen” samples.

Thus, we typically restrict the hypothesis space of distributions that we
search over
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Bias-Variance trade off

If the hypothesis space is very limited, it might not be able to represent
Pdata, even with unlimited data

This type of limitation is called bias, as the learning is limited on how
close it can approximate the target distribution

If we select a highly expressive hypothesis class, we might represent better
the data

When we have small amount of data, multiple models can fit well, or
even better than the true model. Moreover, small perturbations on D
will result in very different estimates
This limitation is call the variance.

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 4 37 / 41



Bias-Variance trade off

There is an inherent bias-variance trade off when selecting the hypothesis
class. Error in learning due to both things: bias and variance.

Hypothesis space: linear relationship

Does it fit well? Underfits

Hypothesis space: high degree polynomial

Overfits

Hypothesis space: low degree polynomial

Right tradeoff
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How to avoid overfitting?

Hard constraints, e.g. by selecting a less expressive hypothesis class:

Bayesian networks with at most d parents
Smaller neural networks with less parameters
Weight sharing

Soft preference for “simpler” models: Occam Razor.

Augment the objective function with regularization:

objective(x,M) = loss(x,M) + R(M)

Evaluate generalization performance on a held-out validation set.
Log-likelihood should be similar on both training and validation set if there
is no overfitting (as in discriminative modeling!)
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Conditional generative models

Suppose we want to generate a set of variables Y given some others
X, e.g., text to speech

We concentrate on modeling p(Y|X), and use a conditional loss
function

− logPθ(y | x).

Since the loss function only depends on Pθ(y | x), suffices to estimate
the conditional distribution, not the joint
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Recap

For autoregressive models, it is easy to compute pθ(x)

Ideally, evaluate in parallel each conditional

log pneural(x
(j)
i |pa(xi )

(j); θi ). Not like RNNs.

Natural to train them via maximum likelihood

Higher log-likelihood doesn’t necessarily mean better looking samples

Other ways of measuring similarity are possible (Generative Adversarial
Networks, GANs)
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