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Announcements

Glitches with Google Hangout link should be resolved. Will be
checking email at the beginning of each office hours session to make
sure there are no more glitches.

Homework template is available.

Extra lecture notes have been posted.

Good luck with ICML deadline!
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Recap of last lecture

1 Autoregressive models:

Chain rule based factorization is fully general
Compact representation via conditional independence and/or neural
parameterizations

2 Autoregressive models Pros:

Easy to evaluate likelihoods
Easy to train

3 Autoregressive models Cons:

Requires an ordering
Generation is sequential
Cannot learn features in an unsupervised way
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Plan for today

1 Latent variable models

Definition
Motivation

2 Warm-up: Shallow mixture models
3 Deep latent-variable models

Representation: Variational autoencoder
Learning: Variational inference
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Latent Variable Models: Motivation

1 Lots of variability in images x due to gender, eye color, hair color,
pose, etc. However, unless images are annotated, these factors of
variation are not explicitly available (latent).

2 Idea: explicitly model these factors using latent variables z
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Latent Variable Models: Definition

A latent variable model defines a probability distribution

p(x , z) = p(x |z)p(z)

containing two sets of variables:
1 Observed variables x that represent the high-dimensional object we

are trying to model.
2 Latent variables z that are not in the training set, but that are

associated with the x via p(z |x) and can encode the structure of the
data.
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Latent Variable Models: Example

1 Only shaded variables x are observed in the data (pixel values)
2 Latent variables z correspond to high level features

If z chosen properly, p(x|z) could be much simpler than p(x)
If we had trained this model, then we could identify features via
p(z | x), e.g., p(EyeColor = Blue|x)

3 Challenge: Very difficult to specify these conditionals by hand
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Deep Latent Variable Models: Example

1 z ∼ N (0, I )

2 p(x | z) = N (µθ(z),Σθ(z)) where µθ,Σθ are neural networks

3 Hope that after training, z will correspond to meaningful latent
factors of variation (features). Unsupervised representation learning.

4 As before, features can be computed via p(z | x). In practice, we will
need to use approximate inference.
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Mixture of Gaussians: a Shallow Latent Variable Model

Mixture of Gaussians. Bayes net: z→ x.

1 z ∼ Categorical(1, · · · ,K )

2 p(x | z = k) = N (µk ,Σk)

Generative process

1 Pick a mixture component k by sampling z

2 Generate a data point by sampling from that Gaussian
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Mixture of Gaussians: a Shallow Latent Variable Model

Mixture of Gaussians:

1 z ∼ Categorical(1, · · · ,K )

2 p(x | z = k) = N (µk ,Σk)

3 Clustering: The posterior p(z | x) identifies the mixture component

4 Unsupervised learning: We are hoping to learn from unlabeled data
(ill-posed problem)
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Representational Power of Mixture models

Combine simple models into a more complex and expressive one

p(x) =
∑
z

p(x, z) =
∑
z

p(z)p(x | z) =
K∑

k=1

p(z = k)N (x;µk ,Σk)︸ ︷︷ ︸
component

The likelihood is non-convex: this increases representational power, but
makes inference more challenging.
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Example: Unsupervised learning over hand-written digits

Unsupervised clustering of handwritten digits.

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 5 12 / 35



Example: Unsupervised learning over DNA sequence data
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Example: Unsupervised learning over face images
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Plan for today

1 Latent variable models

Definition
Motivation

2 Warm-up: Shallow mixture models
3 Deep latent-variable models

Representation: Variational autoencoder
Learning: Variational inference
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Variational Autoencoder

A mixture of an infinite number of Gaussians:

1 z ∼ N (0, I )
2 p(x | z) = N (µθ(z),Σθ(z)) where µθ,Σθ are neural networks

µθ(z) = σ(Az + c) = (σ(a1z + c1), σ(a2z + c2)) = (µ1(z), µ2(z))

Σθ(z) = diag(exp(σ(Bz + d))) =
(

exp(σ(b1z+d1)) 0
0 exp(σ(b2z+d2))

)
θ = (A,B, c , d)

3 Even though p(x | z) is simple, the marginal p(x) is very
complex/flexible
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Benefits of the Latent-Variable Approach

Allow us to define complex models p(x) in terms of simple building
blocks p(x | z)

Natural for unsupervised learning tasks (clustering, unsupervised
representation learning, etc.)

No free lunch: much more difficult to learn compared to fully
observed, autoregressive models
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Partially observed data

Suppose that our joint distribution is

p(X,Z; θ)

We have a dataset D, where for each datapoint the X variables are observed
(e.g., pixel values) and the variables Z are never observed (e.g., cluster or
class id.). D = {x(1), · · · , x(M)}.

Maximum likelihood learning:

log
∏
x∈D

p(x; θ) =
∑
x∈D

log p(x; θ) =
∑
x∈D

log
∑
z

p(x, z; θ)

Evaluating log
∑

z p(x, z; θ) can be hard!
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Example: Learning with Missing Values

Suppose some pixel values are missing at train time (e.g., top half)

Let X denote observed random variables, and Z the unobserved ones (also
called hidden or latent)

Suppose we have a model for the joint distribution (e.g., PixelCNN)

p(X,Z; θ)

What is the probability p(X = x̄; θ) of observing a training data point x̄?∑
z

p(X = x̄,Z = z; θ) =
∑
z

p(x̄, z; θ)

Need to consider all possible ways to complete the image (fill green part)
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Example: Variational Autoencoder

A mixture of an infinite number of Gaussians:

z ∼ N (0, I ). p(x | z) = N (µθ(z),Σθ(z)) where µθ,Σθ are neural
networks

Z are unobserved at train time (also called hidden or latent)

Suppose we have a model for the joint distribution. What is the
probability p(X = x̄; θ) of observing a training data point x̄?∫

z
p(X = x̄,Z = z; θ)dz =

∫
z
p(x̄, z; θ)dz
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Partially observed data

Suppose that our joint distribution is

p(X,Z; θ)

We have a dataset D, where for each datapoint the X variables are observed
(e.g., pixel values) and the variables Z are never observed (e.g., cluster or
class id.). D = {x(1), · · · , x(M)}.
Maximum likelihood learning:

log
∏
x∈D

p(x; θ) =
∑
x∈D

log p(x; θ) =
∑
x∈D

log
∑
z

p(x, z; θ)

Evaluating log
∑

z p(x, z; θ) can be intractable. Suppose we have 30 binary
latent features, z ∈ {0, 1}30. Evaluating

∑
z p(x, z; θ) involves a sum with

230 terms. For continuous variables, log
∫
z p(x, z; θ)dz is often intractable.

Gradients ∇θ also hard to compute.

Need approximations. One gradient evaluation per training data point
x ∈ D, so approximation needs to be cheap.
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First attempt: Naive Monte Carlo

Likelihood function pθ(x) for Partially Observed Data is hard to compute:

pθ(x) =
∑

All values of z

pθ(x, z) = |Z|
∑
z∈Z

1

|Z|
pθ(x, z) = |Z|Ez∼Uniform(Z) [pθ(x, z)]

We can think of it as an (intractable) expectation. Monte Carlo to the rescue:

1 Sample z(1), · · · , z(k) uniformly at random

2 Approximate expectation with sample average

∑
z

pθ(x, z) ≈ |Z| 1
k

k∑
j=1

pθ(x, z(j))

Works in theory but not in practice. For most z, pθ(x, z) is very low (most
completions don’t make sense). Some are very large but will never ”hit” likely
completions by uniform random sampling. Need a clever way to select z(j) to
reduce variance of the estimator.
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Second attempt: Importance Sampling

Likelihood function pθ(x) for Partially Observed Data is hard to compute:

pθ(x) =
∑

All possible values of z

pθ(x, z) =
∑
z∈Z

q(z)

q(z)
pθ(x, z) = Ez∼q(z)

[
pθ(x, z)

q(z)

]
Monte Carlo to the rescue:

1 Sample z(1), · · · , z(k) from q(z)

2 Approximate expectation with sample average

pθ(x) ≈ 1

k

k∑
j=1

pθ(x, z(j))

q(z(j))

What is a good choice for q(z)? Intuitively, choose likely completions.
Challenges: deriving algorithms for choosing q and extending this approximation
to the marginal log-likelihood.
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Approximating the Marginal Log LIkelihood

We can approximate marginal probabilities with importance sampling:

pθ(x) ≈ 1

k

k∑
j=1

pθ(x, z(j))

q(z(j))

However, what we want to approximate is the marginal log-likelihood:

log

(∑
z∈Z

pθ(x, z)

)
= log

(∑
z∈Z

q(z)

q(z)
pθ(x, z)

)
= log

(
Ez∼q(z)

[
pθ(x, z)

q(z)

])
It’s clear that

Ez∼q(z)

[
log

(
pθ(x, z)

q(z)

)]
6= log

(
Ez∼q(z)

[
pθ(x, z)

q(z)

])
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Jensen’s Inequality

What we want to approximate is the marginal log-likelihood:

log

(∑
z∈Z

pθ(x, z)

)
= log

(∑
z∈Z

q(z)

q(z)
pθ(x, z)

)
= log

(
Ez∼q(z)

[
pθ(x, z)

q(z)

])

log() is a concave function. log(px + (1− p)x ′) ≥ p log(x) + (1− p) log(x ′).

Idea: use Jensen Inequality (for concave functions)

log
(
Ez∼q(z) [f (z)]

)
= log

(∑
z

q(z)f (z)

)
≥
∑
z

q(z) log f (z)
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Evidence Lower Bound

Log-Likelihood function for Partially Observed Data is hard to compute:

log

(∑
z∈Z

pθ(x, z)

)
= log

(∑
z∈Z

q(z)

q(z)
pθ(x, z)

)
= log

(
Ez∼q(z)

[
pθ(x, z)

q(z)

])

log() is a concave function. log(px + (1− p)x ′) ≥ p log(x) + (1− p) log(x ′).

Idea: use Jensen Inequality (for concave functions)

log
(
Ez∼q(z) [f (z)]

)
= log

(∑
z

q(z)f (z)

)
≥
∑
z

q(z) log f (z)

Choosing f (z) = pθ(x,z)
q(z)

log

(
Ez∼q(z)

[
pθ(x, z)

q(z)

])
≥ Ez∼q(z)

[
log

(
pθ(x, z)

q(z)

)]
Called Evidence Lower Bound (ELBO).
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Variational inference

Suppose q(z) is any probability distribution over the hidden variables
Evidence lower bound (ELBO) holds for any q

log p(x; θ) ≥
∑
z

q(z) log

(
pθ(x, z)

q(z)

)
=

∑
z

q(z) log pθ(x, z)−
∑
z

q(z) log q(z)︸ ︷︷ ︸
Entropy H(q) of q

=
∑
z

q(z) log pθ(x, z) + H(q)

Equality holds if q = p(z|x; θ)

log p(x; θ)=
∑
z

q(z) log p(z, x; θ) + H(q)

Variational Inference: Optimize over the possible q’s to make
bound as tight as possible.
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Why is the bound tight

We derived this lower bound that holds holds for any choice of q(z):

log p(x; θ) ≥
∑
z

q(z) log
p(x, z; θ)

q(z)

If q(z) = p(z|x; θ) the bound becomes:∑
z

p(z|x; θ) log p(x, z; θ)

p(z|x; θ) =
∑
z

p(z|x; θ) log p(z|x; θ)p(x; θ)
p(z|x; θ)

=
∑
z

p(z|x; θ) log p(x; θ)

= log p(x; θ)
∑
z

p(z|x; θ)︸ ︷︷ ︸
=1

= log p(x; θ)

Confirms our previous importance sampling intuition: we should
choose likely completions.
In practice, the posterior p(z|x; θ) is intractable to compute. How
loose is the bound?
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Variational inference continued

Suppose q(z) is any probability distribution over the hidden variables.
A little bit of algebra reveals

DKL(q(z)‖p(z|x; θ)) = −
∑
z

q(z) log p(z, x; θ) + log p(x; θ)− H(q) ≥ 0

Rearranging, we re-derived the Evidence lower bound (ELBO)

log p(x; θ) ≥
∑
z

q(z) log p(z, x; θ) + H(q)

Equality holds if q = p(z|x; θ) because DKL(q(z)‖p(z|x; θ)) = 0

log p(x; θ)=
∑
z

q(z) log p(z, x; θ) + H(q)
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Variational inference continued

Suppose q(z) is any probability distribution over the hidden variables.
A little bit of algebra reveals

DKL(q(z)‖p(z|x; θ)) = −
∑
z

q(z) log p(z, x; θ) + log p(x; θ)− H(q) ≥ 0

Rearranging, we get that

log p(x; θ) = ELBO + DKL(q(z)‖p(z|x; θ)).

The closer q(z) is to p(z|x; θ), the closer the ELBO is to the true
log-likelihood
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Variational Inference Optimizes the Evidence Lower Bound

Variational inference: Optimize q to approximate the intractable posterior
p(z|x; θ).

Suppose q(z;φ) is a (tractable) probability distribution over the hidden
variables parameterized by φ (variational parameters)

For example, a Gaussian with mean and covariance specified by φ

q(z;φ) = N (φ1, φ2)

Variational inference: pick φ so that q(z;φ) is as close as possible to
p(z|x; θ). In the figure, the posterior p(z|x; θ) (blue) is better approximated
by N (2, 2) (orange) than N (−4, 0.75) (green)
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Example: Optimizing Likelihood with Missing Data

Assume p(xtop, xbottom; θ) assigns high probability to images that look like
digits. In this example, we assume z = xtop are unobserved (latent)

Suppose q(xtop;φ) is a (tractable) probability distribution over the hidden
variables (missing pixels in this example) xtop parameterized by φ
(variational parameters)

q(xtop;φ) =
∏

unobserved variables xtopi

(φi )
xtopi (1− φi )(1−x

top
i )

Is φi = 0.5 ∀i a good approximation to the posterior p(xtop|xbottom; θ)? No

Is φi = 1 ∀i a good approximation to the posterior p(xtop|xbottom; θ)? No

Is φi ≈ 1 for pixels i corresponding to the top part of digit 9 a good
approximation? Yes
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Summary: The Evidence Lower bound

log p(x; θ) ≥
∑
z

q(z;φ) log p(z, x; θ) + H(q(z;φ)) = L(x; θ, φ)︸ ︷︷ ︸
ELBO

log p(x; θ) = L(x; θ, φ) + DKL(q(z;φ)‖p(z|x; θ))

The better q(z;φ) can approximate the posterior p(z|x; θ), the smaller
DKL(q(z;φ)‖p(z|x; θ)) we can achieve, the closer ELBO will be to
log p(x; θ). Next: jointly optimize over θ and φ to maximize the ELBO
over a dataset
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Summary

Latent Variable Models Pros:

Easy to build flexible models
Suitable for unsupervised learning

Latent Variable Models Cons:

Hard to evaluate likelihoods
Hard to train via maximum-likelihood
Fundamentally, the challenge is that posterior inference p(z | x) is hard.
Typically requires variational approximations

Next steps: scale-up variational inference to large datasets and neural
networks

Amortized variational inference
Low variance gradient estimators and the reparametrization trick

Alternative: give up on KL-divergence and likelihood (GANs)
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