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Announcements

Thank you for signing up for presentation slots. Papers will be out by
end of the week.

Assignment submission system will be up by the end of the week.

Good luck with ICML deadline!
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Plan for today

1 Deep latent variable models: a recap
2 Learning deep latent variable generative models

Stochastic optimization: gradient estimators

REINFORCE estimator
Reparameterization trick

Inference amortization
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Recap: Motivation

1 Lots of variability in images x due to gender, eye color, hair color,
pose, etc. However, unless images are annotated, these factors of
variation are not explicitly available (latent).

2 Idea: explicitly model these factors using latent variables z
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Recap: Variational Autoencoder

A mixture of an infinite number of Gaussians:

1 z ∼ N (0, I )

2 p(x | z) = N (µθ(z),Σθ(z)) where µθ,Σθ are neural networks

3 Even though p(x | z) is simple, the marginal p(x) is very
complex/flexible
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Recap: Latent Variable Models

Latent Variable Models

Allow us to define complex models p(x) in terms of simple building
blocks p(x | z)
Natural for unsupervised learning tasks (clustering, unsupervised
representation learning, etc.)
No free lunch: much more difficult to learn compared to fully observed,
autoregressive models
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Recap: Variational Inference

Suppose q(z) is any probability distribution over the hidden variables

DKL(q(z)‖p(z|x; θ)) = −
∑
z

q(z) log p(z, x; θ) + log p(x; θ)− H(q) ≥ 0

Evidence lower bound (ELBO) holds for any q

log p(x; θ) ≥
∑
z

q(z) log p(z, x; θ) + H(q)

Equality holds if q = p(z|x; θ)

log p(x; θ)=
∑
z

q(z) log p(z, x; θ) + H(q)
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Recap: The Evidence Lower bound

What if the posterior p(z|x; θ) is intractable to compute?

Suppose q(z;φ) is a (tractable) probability distribution over the hidden
variables parameterized by φ (variational parameters)

For example, a Gaussian with mean and covariance specified by φ

q(z;φ) = N (φ1, φ2)

Variational inference: pick φ so that q(z;φ) is as close as possible to
p(z|x; θ). In the figure, the posterior p(z|x; θ) (blue) is better approximated
by N (2, 2) (orange) than N (−4, 0.75) (green)
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Recap: The Evidence Lower bound

log p(x; θ) ≥
∑
z

q(z;φ) log p(z, x; θ) + H(q(z;φ)) = L(x; θ, φ)︸ ︷︷ ︸
ELBO

= L(x; θ, φ) + DKL(q(z;φ)‖p(z|x; θ))

The better q(z;φ) can approximate the posterior p(z|x; θ), the smaller
DKL(q(z;φ)‖p(z|x; θ)) we can achieve, the closer ELBO will be to
log p(x; θ). Next: jointly optimize over θ and φ to maximize the ELBO
over a dataset
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Plan for today

1 Deep latent variable models: a recap
2 Learning deep latent variable generative models

Stochastic optimization: gradient estimators

REINFORCE estimator
Reparameterization trick

Inference amortization
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Variational learning

L(x; θ, φ1) and L(x; θ, φ2) are both lower bounds. We want to jointly
optimize θ and φ
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The Evidence Lower bound applied to the entire dataset

Evidence lower bound (ELBO) holds for any q(z;φ)

log p(x; θ) ≥
∑
z

q(z;φ) log p(z, x; θ) + H(q(z;φ)) = L(x; θ, φ)︸ ︷︷ ︸
ELBO

Maximum likelihood learning (over the entire dataset):

`(θ;D) =
∑
xi∈D

log p(xi ; θ) ≥
∑
xi∈D

L(xi ; θ, φi )

Therefore

max
θ
`(θ;D) ≥ max

θ,φ1,··· ,φM

∑
xi∈D

L(xi ; θ, φi )

Note that we use different variational parameters φi for every data point xi ,
because the true posterior p(z|xi ; θ) is different across datapoints xi
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A variational approximation to the posterior

Assume p(z, xi ; θ) is close to pdata(z, xi ). Suppose z captures information
such as the digit identity (label), style, etc. For simplicity, assume
z ∈ {0, 1, 2, · · · , 9}.
Suppose q(z;φi ) is a (categorical) probability distribution over the hidden
variable z parameterized by φi = [p0, p1, · · · , p9]

q(z;φi ) =
∏

k∈{0,1,2,··· ,9}

(φik)1[z=k]

If φi = [0, 0, 0, 1, 0, · · · , 0], is q(z;φi ) a good approximation of p(z|x1; θ) (x1

is the leftmost datapoint)? Yes

If φi = [0, 0, 0, 1, 0, · · · , 0], is q(z;φi ) a good approximation of p(z|x3; θ) (x3

is the rightmost datapoint)? No

For each xi , need to find a good φi,∗ (via optimization, can be expensive).
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Learning via stochastic variational inference (SVI)

Optimize
∑

xi∈D L(xi ; θ, φi ) as a function of θ, φ1, · · · , φM using
(stochastic) gradient descent

L(xi ; θ, φi ) =
∑
z

q(z;φi ) log p(z, xi ; θ) + H(q(z;φi ))

= Eq(z;φi )[log p(z, xi ; θ)− log q(z;φi )]

1 Initialize θ, φ1, · · · , φM

2 Randomly sample a data point xi from D
3 Optimize L(xi ; θ, φi ) as a function of φi :

1 Repeat φi = φi + η∇φiL(xi ; θ, φi )
2 until convergence to φi,∗ ≈ arg maxφ L(xi ; θ, φ)

4 Compute ∇θL(xi ; θ, φi ,∗)
5 Update θ in the gradient direction. Go to step 2

How to compute the gradients? There might not be a closed form
solution for the expectations. So we use Monte Carlo sampling
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Learning Deep Generative models

L(x; θ, φ) =
∑
z

q(z;φ) log p(z, x; θ) + H(q(z;φ))

= Eq(z;φ)[log p(z, x; θ)− log q(z;φ)]

Note: dropped i superscript from φi for compactness

To evaluate the bound, sample z1, · · · , zk from q(z;φ) and estimate

Eq(z;φ)[log p(z, x; θ)− log q(z;φ)] ≈ 1

k

∑
k

log p(zk , x; θ)− log q(zk ;φ))

Key assumption: q(z;φ) is tractable, i.e., easy to sample from and evaluate

Want to compute ∇θL(x; θ, φ) and ∇φL(x; θ, φ)

The gradient with respect to θ is easy

∇θEq(z;φ)[log p(z, x; θ)− log q(z;φ)] = Eq(z;φ)[∇θ log p(z, x; θ)]

≈ 1

k

∑
k

∇θ log p(zk , x; θ)
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Learning Deep Generative models

L(x; θ, φ) =
∑
z

q(z;φ) log p(z, x; θ) + H(q(z;φ))

= Eq(z;φ)[log p(z, x; θ)− log q(z;φ)]

Want to compute ∇θL(x; θ, φ) and ∇φL(x; θ, φ)

The gradient with respect to φ is more complicated because the expectation
depends on φ

We still want to estimate with a Monte Carlo average
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Policy Gradients

Want to compute a gradient with respect to φ of the expected reward

Eqφ(z)[f (z)] =
∑
z

qφ(z)f (z)

∂

∂φi
Eqφ(z)[f (z)] =

∑
z
∂qφ(z)
∂φi

f (z) =
∑

z qφ(z) 1
qφ(z)

∂qφ(z)
∂φi

f (z)

=
∑

z qφ(z)
∂ log qφ(z)

∂φi
f (z) = Eqφ(z)

[
∂ log qφ(z)

∂φi
f (z)

]
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REINFORCE Gradient Estimation

Want to compute a gradient with respect to φ of

Eqφ(z)[f (z)] =
∑
z

qφ(z)f (z)

The REINFORCE rule is

∇φEqφ(z)[f (z)] = Eqφ(z) [f (z)∇φ log qφ(z)]

We can now construct a Monte Carlo estimate

Sample z1, · · · , zK from qφ(z) and estimate

∇φEqφ(z)[f (z)] ≈ 1

K

∑
k

f (zk)∇φ log qφ(zk)

Assumption: The distribution q(·) is easy to sample from and evaluate
probabilities

Works for both discrete and continuous distributions
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Variational Learning of Latent Variable Models

To learn the variational approximation we need to compute the gradient
with respect to φ of

L(x; θ, φ) =
∑
z

qφ(z|x) log p(z, x; θ) + H(qφ(z|x))

= Eqφ(z|x)[log p(z, x; θ)− log qφ(z|x))]

The function inside the brackets also depends on φ (and θ, x). Want to
compute a gradient with respect to φ of

Eqφ(z|x)[f (φ, θ, z, x)] =
∑
z

qφ(z|x)f (φ, θ, z, x)

The REINFORCE rule is

∇φEqφ(z|x)[f (φ, θ, z, x)] = Eqφ(z|x) [f (φ, θ, z, x)∇φ log qφ(z|x) +∇φf (φ, θ, z, x)]

We can now construct a Monte Carlo estimate of ∇φL(x; θ, φ)
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REINFORCE Gradient Estimates have High Variance

Want to compute a gradient with respect to φ of

Eqφ(z)[f (z)] =
∑
z

qφ(z)f (z)

The REINFORCE rule is

∇φEqφ(z)[f (z)] = Eqφ(z) [f (z)∇φ log qφ(z)]

Monte Carlo estimate: Sample z1, · · · , zK from qφ(z)

∇φEqφ(z)[f (z)] ≈ 1

K

∑
k

f (zk)∇φ log qφ(zk) := fMC(z1, · · · , zK )

Monte Carlo estimates of gradients are unbiased

Ez1,··· ,zK∼qφ(z)
[
fMC(z1, · · · , zK )

]
= ∇φEqφ(z)[f (z)]
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Learning Deep Generative models

Optimize
∑

xi∈D L(xi ; θ, φ) as a function of θ, φ using (stochastic)
gradient descent

L(x; θ, φ) =
∑
z

qφ(z|x) log p(z, x; θ) + H(qφ(z|x))

= Eqφ(z|x)[log p(z, x; θ)− log qφ(z|x))]

1 Initialize θ(0), φ(0)

2 Randomly sample a data point xi from D
3 Estimate ∇θL(xi ; θ, φ) and ∇φL(xi ; θ, φ) (Monte Carlo)

4 Update θ, φ in the gradient direction

In practice, gradients estimates can be too noisy. Need to use control
variates (baselines) or reparameterization trick
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Reparameterization

Want to compute a gradient with respect to φ of

Eq(z;φ)[r(z)] =

∫
q(z;φ)r(z)dz

where z is now continuous

Suppose q(z;φ) = N (µ, σ2I ) is Gaussian with parameters φ = (µ, σ). These
are equivalent ways of sampling:

Sample z ∼ qφ(z)
Sample ε ∼ N (0, I ), z = µ+ σε = g(ε;φ)

Using this equivalence we compute the expectation in two ways:

Ez∼q(z;φ)[r(z)] = Eε∼N (0,I )[r(g(ε;φ))] =

∫
p(ε)r(µ+ σε)dε

∇φEq(z;φ)[r(z)] = ∇φEε[r(g(ε;φ))] = Eε[∇φr(g(ε;φ))]

Easy to estimate via Monte Carlo if r and g are differentiable w.r.t. φ and ε
is easy to sample from (backpropagation)

Eε[∇φr(g(ε;φ))] ≈ 1
k

∑
k ∇φr(g(εk ;φ)) where ε1, · · · , εk ∼ N (0, I ).

Typically much lower variance than REINFORCE
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Learning Deep Generative models

L(x; θ, φ) =
∑
z

q(z;φ) log p(z, x; θ) + H(q(z;φ))

= Eq(z;φ)[log p(z, x; θ)− log q(z;φ)︸ ︷︷ ︸
r(z,φ)

]

Our case is slightly more complicated because we have Eq(z;φ)[r(z, φ)]
instead of Eq(z;φ)[r(z)]. Term inside the expectation also depends on φ.

Can still use reparameterization. Assume z = µ+ σε = g(ε;φ) like before.
Then

Eq(z;φ)[r(z, φ)] = Eε[r(g(ε;φ), φ)]

≈ 1

k

∑
k

r(g(εk ;φ), φ)
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Amortized Inference

max
θ
`(θ;D) ≥ max

θ,φ1,··· ,φM

∑
xi∈D

L(xi ; θ, φi )

So far we have used a set of variational parameters φi for each data
point xi . Does not scale to large datasets.

Amortization: Now we learn a single parametric function fλ that
maps each x to a set of (good) variational parameters. Like doing
regression on xi 7→ φi ,∗

For example, if q(z|xi ) are Gaussians with different means µ1, · · · , µm,
we learn a single neural network fλ mapping xi to µi

We approximate the posteriors q(z|xi ) using this distribution qλ(z|x)
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A variational approximation to the posterior

Assume p(z, xi ; θ) is close to pdata(z, xi ). Suppose z captures information
such as the digit identity (label), style, etc.

Suppose q(z;φi ) is a (tractable) probability distribution over the hidden
variables z parameterized by φi

For each xi , need to find a good φi,∗ (via optimization, expensive).

Amortized inference: learn how to map xi to a good set of parameters φi

via q(z; fλ(xi )). fλ learns how to solve the optimization problem for you

In the literature, q(z; fλ(xi )) often denoted qφ(z|x)
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Learning with amortized inference

Optimize
∑

xi∈D L(xi ; θ, φ) as a function of θ, φ using (stochastic)
gradient descent

L(x; θ, φ) =
∑
z

qφ(z|x) log p(z, x; θ) + H(qφ(z|x))

= Eqφ(z|x)[log p(z, x; θ)− log qφ(z|x))]

1 Initialize θ(0), φ(0)

2 Randomly sample a data point xi from D
3 Compute ∇θL(xi ; θ, φ) and ∇φL(xi ; θ, φ)

4 Update θ, φ in the gradient direction

How to compute the gradients? Use reparameterization like before
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Autoencoder perspective

L(x; θ, φ) = Eqφ(z|x)[log p(z, x; θ)− log qφ(z|x))]

= Eqφ(z|x)[log p(z, x; θ)− log p(z) + log p(z)− log qφ(z|x))]

= Eqφ(z|x)[log p(x|z; θ)]− DKL(qφ(z|x)‖p(z))

1 Take a data point xi

2 Map it to ẑ by sampling from qφ(z|xi ) (encoder)

3 Reconstruct x̂ by sampling from p(x|ẑ; θ) (decoder)

What does the training objective L(x; θ, φ) do?

First term encourages x̂ ≈ xi (xi likely under p(x|ẑ; θ))

Second term encourages ẑ to be likely under the prior p(z)
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Learning Deep Generative models

1 Given an image xi , we (stochastically) compress it using ẑ ∼ qφ(z|xi )
obtaining a message ẑ. We send the message ẑ to the decoder

2 Given ẑ, the decoder reconstructs the image using p(x|ẑ; θ)

The term DKL(qφ(z|x)‖p(z)) forces the distribution over messages to
have a specific shape p(z). If Bob knows p(z), he can generate
realistic messages ẑ ∼ p(z) and the corresponding image, as if he had
received them from Alice!
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Summary of Latent Variable Models

1 Combine simple models to get a more flexible one (e.g., mixture of
Gaussians)

2 Directed model permits ancestral sampling (efficient generation):
z ∼ p(z), x ∼ p(x|z; θ)

3 However, log-likelihood is generally intractable, hence learning is
difficult

4 Joint learning of a model (θ) and an amortized inference component
(φ) to achieve tractability via ELBO optimization

5 Latent representations for any x can be inferred via qφ(z|x)
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Research Directions

Improving variational learning via:

1 Better optimization techniques

2 More expressive approximating families

3 Alternate loss functions
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Model families - Encoder

Amortization (Gershman & Goodman, 2015; Kingma; Rezende; ..)

Scalability: Efficient learning and inference on massive datasets

Augmenting variational posteriors

Monte Carlo methods: Importance Sampling (Burda et al., 2015), MCMC
(Salimans et al., 2015, Hoffman, 2017, Levy et al., 2018), Sequential Monte
Carlo (Maddison et al., 2017, Le et al., 2018, Naesseth et al., 2018),
Rejection Sampling (Grover et al., 2018)

Normalizing flows (Rezende & Mohammed, 2015, Kingma et al., 2016)
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Model families - Decoder

Powerful decoders p(x|z; θ) such as DRAW (Gregor et al., 2015), PixelCNN
(Gulrajani et al., 2016)

Parameterized, learned priors p(z; θ) (Nalusnick et al., 2016, Tomczak &
Welling, 2018, Graves et al., 2018)
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Variational objectives

Tighter ELBO does not imply:

Better samples: Sample quality and likelihoods are uncorrelated (Theis et
al., 2016)

Informative latent codes: Powerful decoders can ignore latent codes due to
tradeoff in minimizing reconstruction error vs. KL prior penalty (Bowman et
al., 2015, Chen et al., 2016, Zhao et al., 2017, Alemi et al., 2018)

Alternatives to the reverse-KL divergence:

Renyi’s alpha-divergences (Li & Turner, 2016)

Integral probability metrics such as maximum mean discrepancy, Wasserstein
distance (Dziugaite et al., 2015; Zhao et. al, 2017; Tolstikhin et al., 2018)
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