
Learning Latent Variable Models

Volodymyr Kuleshov

Cornell Tech

Lecture 7

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 7 1 / 35

Announcements

Assignment 1 is due on Thursday.

The Gradescope system is now up. The code is M45WYY.

Presentation topics are up.

I will send confirmations to the students who emailed me about
presentation topics over the past week.

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 7 2 / 35

Lecture Outline

1 Recap and Motivation for Normalizing Flows

Autoregressive Models
Latent Variable Models
Research Directions in LVMs

2 Volume-Preserving Transformations

The Determinant
Change of Variables Formula

3 Normalizing Flows

Representation and Learning
Composing Simple Transformations
Triangular Jacobians

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 7 3 / 35

Recap: Autoregressive Models

1 Autoregressive models: pθ(x) =
∏n

i=1 pθ(xi |x<i)

Chain rule based factorization is fully general
Compact representation via conditional independence and/or neural
parameterizations

2 Autoregressive models Pros:

Easy to evaluate likelihoods
Easy to train

3 Autoregressive models Cons:

Requires an ordering
Generation is sequential
Cannot learn features in an unsupervised way

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 7 4 / 35

Recap: Latent Variable Models Models

Variational Autoencoders: pθ(x) =
∫
pθ(x, z)dz

L(x; θ, φ) = Eqφ(z|x)[log p(x|z; θ)]− DKL(qφ(z|x)‖p(z))

Infinite mixture of Gaussians. means are parametrized by deep net.

Objective has a natural auto-encoder interpretation.

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 7 5 / 35

Recap: Latent Variable Models Models

1 Latent Variable Models Pros:

Easy to build flexible models
Suitable for unsupervised learning

2 Latent Variable Models Cons:

Hard to evaluate likelihoods
Hard to train via maximum-likelihood
Fundamentally, the challenge is that posterior inference p(z | x) is hard.
Typically requires variational approximations

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 7 6 / 35

Research Directions

Improving variational learning via:

1 Better optimization techniques

2 More expressive approximating families

3 Alternate loss functions

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 7 7 / 35

Model families - Encoder

Augmenting variational posteriors

Monte Carlo methods: Importance Sampling (Burda et al., 2015), MCMC
(Salimans et al., 2015, Hoffman, 2017, Levy et al., 2018), Sequential Monte
Carlo (Maddison et al., 2017, Le et al., 2018, Naesseth et al., 2018),
Rejection Sampling (Grover et al., 2018)

Normalizing flows (Rezende & Mohammed, 2015, Kingma et al., 2016)

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 7 8 / 35

Model families - Decoder

Powerful decoders p(x|z; θ) such as DRAW (Gregor et al., 2015), PixelCNN
(Gulrajani et al., 2016)

Parameterized, learned priors p(z; θ) (Nalusnick et al., 2016, Tomczak &
Welling, 2018, Graves et al., 2018)

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 7 9 / 35

Variational objectives

Tighter ELBO does not imply:

Better samples: Sample quality and likelihoods are uncorrelated (Theis et
al., 2016)

Informative latent codes: Powerful decoders can ignore latent codes due to
tradeoff in minimizing reconstruction error vs. KL prior penalty (Bowman et
al., 2015, Chen et al., 2016, Zhao et al., 2017, Alemi et al., 2018)

Alternatives to the reverse-KL divergence:

Renyi’s alpha-divergences (Li & Turner, 2016)

Integral probability metrics such as maximum mean discrepancy, Wasserstein
distance (Dziugaite et al., 2015; Zhao et. al, 2017; Tolstikhin et al., 2018)

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 7 10 / 35

Can We Get Best of Both Worlds?

Model families:

Autoregressive Models: pθ(x) =
∏n

i=1 pθ(xi |x<i)
Variational Autoencoders: pθ(x) =

∫
pθ(x, z)dz

Autoregressive models provide tractable likelihoods but no direct
mechanism for learning features

Variational autoencoders can learn feature representations (via latent
variables z) but have intractable marginal likelihoods

Key question: Can we design a latent variable model with tractable
likelihoods? Yes! Use normalizing flows.

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 7 11 / 35

Simple Prior to Complex Data Distributions

Desirable properties of any model distribution:

Analytic density
Easy-to-sample

Many simple distributions satisfy the above properties e.g., Gaussian,
uniform distributions

Unfortunately, data distributions could be much more complex
(multi-modal)

Key idea: Map simple distributions (easy to sample and evaluate
densities) to complex distributions (learned via data) using invertible
change of variables transformations.

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 7 12 / 35

Lecture Outline

1 Recap and Motivation for Normalizing Flows

Autoregressive Models
Latent Variable Models
Research Directions in LVMs

2 Volume-Preserving Transformations

The Determinant
Change of Variables Formula

3 Normalizing Flows

Representation and Learning
Composing Simple Transformations
Triangular Jacobians

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 7 13 / 35

Example: Change of Variables

Let Z be a uniform random variable U [0, 2] with density pZ . What is
pZ (1)? 1

2

Let X = 4Z , and let pX be its density. What is pX (4)?

pX (4) = p(X = 4) = p(4Z = 4) = p(Z = 1) = pZ (1) = 1/2

This is incorrect. Clearly, X is uniform in [0, 8], so pX (4) = 1/8

Probability mass functions are not probability distributions
(measures).

Transformations need to preserve total volume of probability mass.

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 7 14 / 35

Example: Change of Variables

Change of variables (1D case): If X = f (Z) and f (·) is monotone
with inverse Z = f −1(X) = h(X), then:

pX (x) = pZ (h(x))|h′(x)|

Previous example: If X = 4Z and Z ∼ U [0, 2], what is pX (4)?

Note that h(X) = X/4

pX (4) = pZ (1)h′(4) = 1/2× 1/4 = 1/8

We have expanded the support of the distribution by 4. Hence, we
need to decrease the mass at each point by 4 to preserve the volume.

Generalizes to higher dimensions via determinants of transformations

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 7 15 / 35

Review: Determinants and Volumes (in 2D)

Matrix A =

(
a c
b d

)
maps a unit square to a parallelogram, e.g.:(
a
b

)
=

(
a c
b d

)
·
(

1
0

)
The volume of the parallelotope is equal to the determinant of the
transformation A

det(A) = det

(
a c
b d

)
= ad − bc

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 7 16 / 35

Review: Determinants and Volumes (in 3D)

The volume formula still holds in 3D.

Note that if two vectors are colinear, we get a plane, which has
volume zero in 3D. The determinant is zero and the matrix is singular.

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 7 17 / 35

Review: Determinants and Volumes (in n-D)

In general, the matrix A maps the unit hypercube [0, 1]n to a
parallelotope

Hypercube and parallelotope are generalizations of square/cube and
parallelogram/parallelopiped to higher dimensions

Determinant det(A) still gives volume of the n-D shape.

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 7 18 / 35

Determinants and Volumes for Changing Variables

Let Z be a uniform random vector in [0, 1]n

Let X = AZ for a square invertible matrix A, with inverse W = A−1.
How is X distributed?

The volume of the parallelotope is equal to the determinant of the
transformation A

det(A) = det

(
a c
b d

)
= ad − bc

X is uniformly distributed over the parallelotope. Hence, we have

pX (x) = pZ (W x) |det(W)|
= pZ (W x) / |det(A)|

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 7 19 / 35

Change of Variables Formula (General Case)

For linear transformations specified via A, change in volume is given
by the determinant of A

For non-linear transformations f(·), the linearized change in volume is
given by the determinant of the Jacobian of f(·).

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 7 20 / 35

The Jacobian

Consider a vector valued function f : Rn → Rm, with:

x = (x1, · · · , xn)

f(x) = (f1(x), · · · , fm(x))

The Jacobian is defined as:

J =
∂f

∂x
=

 ∂f1
∂x1

· · · ∂f1
∂xn

· · · · · · · · ·
∂fm
∂x1

· · · ∂fm
∂xn

This generalizes the gradient to multi-variate functions.

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 7 21 / 35

Change of Variables Formula (General Case)

For linear transformations specified via A, change in volume is given
by the determinant of A

For non-linear transformations f(·), the linearized change in volume is
given by the determinant of the Jacobian of f(·).

Change of Variables Formula (General case): The mapping
between Z and X , given by f : Rn 7→ Rn, is invertible such that
X = f(Z) and Z = f−1(X).

pX (x) = pZ
(
f−1(x)

) ∣∣∣∣det(∂f−1(x)

∂x

)∣∣∣∣

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 7 22 / 35

Change of Variables Formula (General Case): Intuition

We are interested in mapping a small volume between (v , u) and
(v + dv , u + du).

For sufficiently small du, dv , the function can be linearized, and
becomes the linear mapping specified by the Jacobian.

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 7 23 / 35

Change of Variables Formula (General Case): Observations

Change of variables (General case): The mapping between Z and
X , given by f : Rn 7→ Rn, is invertible such that X = f(Z) and
Z = f−1(X).

pX (x) = pZ
(
f−1(x)

) ∣∣∣∣det(∂f−1(x)

∂x

)∣∣∣∣
Note 1: x, z need to be continuous and have the same dimension. For
example, if x ∈ Rn then z ∈ Rn

Note 2: For any invertible matrix A, det(A−1) = det(A)−1

pX (x) = pZ (z)

∣∣∣∣det(∂f(z)

∂z

)∣∣∣∣−1

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 7 24 / 35

Change of Variables Formula (General Case): 2D Example

Let Z1 and Z2 be continuous random variables with joint density
pZ1,Z2 .

Let u : R2 → R2 be a transformation with inverse v : R2 → R2.

Let X1 = u1(Z1,Z2) and X2 = u2(Z1,Z2) Then, Z1 = v1(X1,X2) and
Z2 = v2(X1,X2)

pX1,X2(x1, x2)

= pZ1,Z2(v1(x1, x2), v2(x1, x2))

∣∣∣∣∣det
(

∂v1(x1,x2)
∂x1

∂v1(x1,x2)
∂x2

∂v2(x1,x2)
∂x1

∂v2(x1,x2)
∂x2

)∣∣∣∣∣ (inverse)

= pZ1,Z2(z1, z2)

∣∣∣∣∣det
(

∂u1(z1,z2)
∂z1

∂u1(z1,z2)
∂z2

∂u2(z1,z2)
∂z1

∂u2(z1,z2)
∂z2

)∣∣∣∣∣
−1

(forward)

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 7 25 / 35

Lecture Outline

1 Recap and Motivation for Normalizing Flows

Autoregressive Models
Latent Variable Models
Research Directions in LVMs

2 Volume-Preserving Transformations

The Determinant
Change of Variables Formula

3 Normalizing Flows

Representation and Learning
Composing Simple Transformations
Triangular Jacobians

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 7 26 / 35

Normalizing Flow Models: Representation

Consider a directed, latent-variable model over observed variables X
and latent variables Z

In a normalizing flow model, the mapping between Z and X , given
by fθ : Rn 7→ Rn, is deterministic and invertible such that X = fθ(Z)
and Z = f−1θ (X)

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 7 27 / 35

Normalizing Flow Models: Learning

In a normalizing flow model, the mapping between Z and X , given
by fθ : Rn 7→ Rn, is deterministic and invertible such that X = fθ(Z)
and Z = f−1θ (X)

We want to learn pX (x; θ) using the principle of maximum likelihood.
Using change of variables, the marginal likelihood p(x) is given by

pX (x; θ) = pZ
(
f−1θ (x)

) ∣∣∣∣∣det
(
∂f−1θ (x)

∂x

)∣∣∣∣∣
Note 1: Unlike in a VAE, we are computing the marginal likelihood
exactly!
Note 2: x, z need to be continuous and have the same dimension.

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 7 28 / 35

Normalizing Flow Models: Constructing f .

We need to construct a density transformation that is:

Invertible, so that we can apply the change of variables formula.

Expressive, so that we can learn complex distributions.

Computationally tractable, so that we can optimize and evaluate it.

Strategy:

Start with a simple distribution for z0 (e.g., Gaussian)

Apply sequence of M simple invertible transformations with x , zM

zm := fmθ ◦ · · · ◦ f1θ (z0) = fmθ (fm−1θ (· · · (f1θ (z0)))) , fθ(z0)

By change of variables

pX (x; θ) = pZ
(
f−1θ (x)

) M∏
m=1

∣∣∣∣det(∂(fmθ)−1(zm)

∂zm

)∣∣∣∣
(Note: determininant of composition equals product of determinants)

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 7 29 / 35

Example: Planar Flows

Planar flow (Rezende and Mohamed, 2016). Invertible transformation

x = fθ(z) = z + uh(wTz + b)

parameterized by θ = (w,u, b) where h(·) is a non-linearity

Absolute value of the determinant of the Jacobian is given by∣∣∣∣det∂fθ(z)

∂z

∣∣∣∣ =
∣∣∣det(I + h′(wTz + b)uwT)

∣∣∣
=
∣∣∣1 + h′(wTz + b)uTw

∣∣∣
(matrix determinant lemma)

Need to restrict parameters and non-linearity for the mapping to be
invertible. For example, h = tanh() and h′(wTz + b)uTw ≥ −1

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 7 30 / 35

Example: Planar Flows

Base distribution: Gaussian

Base distribution: Uniform

10 planar transformations can transform simple distributions into a
more complex one

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 7 31 / 35

Normalizing Flows: Recap

Normalizing: Change of variables gives a normalized density after
applying an invertible transformation.
Flow: The function f makes the probability mass smoothly flow from a
simple distribution over the space to one that is complex.

Transformations need to be invertible, hence dim(X) = dim(Z).

Complex transformations can be composed from simple ones:

zm := fmθ ◦ · · · ◦ f1θ (z0) = fmθ (fm−1θ (· · · (f1θ (z0)))) , fθ(z0)

Learning via maximum likelihood over the dataset D

max
θ

log pX (D; θ) =
∑
x∈D

log pZ
(
f−1θ (x)

)
+ log

∣∣∣∣∣det
(
∂f−1θ (x)

∂x

)∣∣∣∣∣
Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 7 32 / 35

Normalizing Flows: Learning and Inference Recap

Exact likelihood evaluation via inverse tranformation x 7→ z and
change of variables formula

Sampling via forward transformation z 7→ x

z ∼ pZ (z) x = fθ(z)

Latent representations inferred via inverse transformation (no
inference network required!)

z = f−1θ (x)

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 7 33 / 35

Challenges in Building Flow Models

Complex, invertible transformations with tractable evaluation:

Likelihood evaluation requires efficient evaluation of x 7→ z mapping
Sampling requires efficient evaluation of z 7→ x mapping

Computing likelihoods also requires the evaluation of determinants of
n × n Jacobian matrices, where n is the data dimensionality

Computing the determinant for an n × n matrix is O(n3): prohibitively
expensive within a learning loop!

Key idea: Choose tranformations so that the resulting Jacobian matrix
has special structure. For example, the determinant of a triangular matrix
is the product of the diagonal entries, i.e., an O(n) operation

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 7 34 / 35

Triangular Jacobian

x = (x1, · · · , xn) = f(z) = (f1(z), · · · , fn(z))

J =
∂f

∂z
=

 ∂f1
∂z1

· · · ∂f1
∂zn

· · · · · · · · ·
∂fn
∂z1

· · · ∂fn
∂zn

Suppose xi = fi (z) only depends on z≤i . Then

J =
∂f

∂z
=

 ∂f1
∂z1

· · · 0

· · · · · · · · ·
∂fn
∂z1

· · · ∂fn
∂zn

has lower triangular structure. Determinant can be computed in linear
time. Similarly, the Jacobian is upper triangular if xi only depends on z≥i
Next lecture: Designing invertible transformations!

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 7 35 / 35

