
Modern Normalizing Flow Models

Volodymyr Kuleshov

Cornell Tech

Lecture 8

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 8 1 / 35



Announcements

Assignment 1 is due at midnight today!

If submitting late, please mark it as such.

Submit Assignment 1 via Gradescope. The code is M45WYY.

Sign up for Gradescope.com with the code
Submit your assignment as a photo/pdf

Assignment 2 will be out today and due in two weeks.

Presentation slots are almost filled, but I can make space.

Project instructions are on Piazza

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 8 2 / 35



Normalizing Flows: Motivation

Model families:

Autoregressive Models: pθ(x) =
∏n

i=1 pθ(xi |x<i )
Variational Autoencoders: pθ(x) =

∫
pθ(x, z)dz

Autoregressive models provide tractable likelihoods but no direct
mechanism for learning features

Variational autoencoders can learn feature representations (via latent
variables z) but have intractable marginal likelihoods

Key question: Can we design a latent variable model with tractable
likelihoods? Yes! Use normalizing flows.

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 8 3 / 35



Normalizing Flow Models: Definition

In a normalizing flow model, the mapping between Z and X , given
by fθ : Rn 7→ Rn, is deterministic and invertible such that X = fθ(Z )
and Z = f−1θ (X )

We want to learn pX (x; θ) using the principle of maximum likelihood.

Using change of variables, the marginal likelihood p(x) is given by

pX (x; θ) = pZ
(
f−1θ (x)

) ∣∣∣∣∣det
(
∂f−1θ (x)

∂x

)∣∣∣∣∣
Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 8 4 / 35



Normalizing Flows: Properties

1 Normalizing Flows Pros:

Exact marginal likelihood p(x) is tractable to compute and optimize
Exact posterior inference p(z |x) is tractable

2 Normalizing Flows Cons:

Only works for continuous variables
The dimensionality of z and x must be the same (can pose
computational challenges).
Places important constraints on what model family we can use.

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 8 5 / 35



Normalizing Flow Models: Constricuting f .

We need to construct a density transformation that is:

Invertible, so that we can apply the change of variables formula.

Expressive, so that we can learn complex distributions.
Computationally tractable, so that we can optimize and evaluate it.

Computing likelihoods requires evaluting the determinant for an n × n
Jacobian matrix, an expensive O(n3) operation!

Strategies:
1 Apply sequence of M simple invertible transformations with x , zM

zm := fmθ ◦ · · · ◦ f1θ (z0) = fmθ (fm−1θ (· · · (f1θ (z0)))) , fθ(z0)

Determininant of composition equals product of determinants:

pX (x; θ) = pZ
(
f−1θ (x)

) M∏
m=1

∣∣∣∣det(∂(fmθ )−1(zm)

∂zm

)∣∣∣∣
2 Choose complex tranformations so that the resulting Jacobian matrix

has special structure.
Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 8 6 / 35



Lecture Outline

1 Recap and Motivation for Normalizing Flows

Triangular Jacobians

2 Nonlinear Independent Components Estimation (Dinh et al. 2014)

3 Real NVP (Dinh et al. 2017)

4 Masked Autoregressive Flow (Papamakarios et al., 2017)

5 Inverse Autoregressive Flow (Kingma et al., 2016)

6 Probability Distillation and Parallel Wavenet

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 8 7 / 35



Triangular Jacobian

x = (x1, · · · , xn) = f(z) = (f1(z), · · · , fn(z))

J =
∂f

∂z
=

 ∂f1
∂z1

· · · ∂f1
∂zn

· · · · · · · · ·
∂fn
∂z1

· · · ∂fn
∂zn


Suppose xi = fi (z) only depends on z≤i . Then

J =
∂f

∂z
=

 ∂f1
∂z1

· · · 0

· · · · · · · · ·
∂fn
∂z1

· · · ∂fn
∂zn


has lower triangular structure. Determinant can be computed in linear
time.

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 8 8 / 35



Triangular Jacobian Can Be Computed in Linear Time

One intuition: Consider a square matrix M with square blocks A,B,C ,D,
and apply the following structure recursively

det(M) = det

(
A C
B D

)
= AD − BC

Another intuition: Area of 2d parallelogram.

Strategy:

Design transformation functions t(z) such that

xi = ti (z<i ).

Hint: this is starting to look like a normalizing flow!
Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 8 9 / 35



Nonlinear Independent Components Estimation (NICE)

Nonlinear Independent Components Estimation (NICE; Dinh et al., 2014)
is a flow-based model, where the transformation

x ← fmθ ◦ · · · ◦ f1θ (z0) = fmθ (fm−1θ (· · · (f1θ (z0)))) , fθ(z0)

is made of a composition of two types of layers:

1 Additive coupling layers

2 Rescaling layers

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 8 10 / 35



NICE - Additive coupling layers

Partition the variables z into two disjoint subsets, say z1:d and zd+1:n for
any 1 ≤ d < n

Forward mapping z 7→ x: defining x ← f(z)

The first set of variables stays the same: x1:d = z1:d (identity
transformation)
The second variables undergo an affine transformation:
xd+1:n = zd+1:n + mθ(z1:d)

mθ(·) is a DNN with params θ, d input units, and n − d output units

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 8 11 / 35



NICE - Additive coupling layers

Is this invertible? Yes!

Forward mapping z 7→ x:

x1:d = z1:d (identity transformation)
xd+1:n = zd+1:n + mθ(z1:d) (mθ(·) is a neural network with parameters
θ, d input units, and n − d output units)

Inverse mapping x 7→ z: defining z ← f−1(x)

The first d dimensions are unchanged: z1:d = x1:d (identity
transformation)
The other dimensions are simply shifted (using the fact that the first
dimensions are unchanged): zd+1:n = xd+1:n −mθ(x1:d)

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 8 12 / 35



NICE - Additive coupling layers

Is the Jacobian tractable? Yes!

Forward mapping z 7→ x:
x1:d = z1:d (identity transformation)
xd+1:n = zd+1:n + mθ(z1:d) (mθ(·) is a neural network with parameters
θ, d input units, and n − d output units)

Jacobian of forward mapping:

J =
∂x

∂z
=

(
Id 0

∂xd+1:n

∂z1:d
In−d

)

det(J) = 1

Volume preserving transformation since determinant is 1.

Inverse mapping can be computed for any m.

Determinant is independent of mθ, hence we can use any function!

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 8 13 / 35



NICE - Rescaling layers

Additive coupling layers are composed together (with arbitrary
partitions of variables in each layer)

Final layer of NICE applies a rescaling transformation

Forward mapping z 7→ x:
xi = sizi

where si > 0 is the scaling factor for the i-th dimension.

Inverse mapping x 7→ z:

zi =
xi
si

Jacobian of forward mapping:

J = diag(s)

det(J) =
n∏

i=1

si

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 8 14 / 35



Samples generated via NICE

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 8 15 / 35



Samples generated via NICE

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 8 16 / 35



Real-NVP: Non-volume preserving extension of NICE

Forward mapping z 7→ x:
x1:d = z1:d (identity transformation)
xd+1:n = zd+1:n � exp(αθ(z1:d)) + µθ(z1:d)
µθ(·) and αθ(·) are both neural networks with parameters θ, d input
units, and n − d output units [�: elementwise product]

Inverse mapping x 7→ z:
z1:d = x1:d (identity transformation)
zd+1:n = (xd+1:n − µθ(x1:d))� (exp(−αθ(x1:d)))

Jacobian of forward mapping:

J =
∂x

∂z
=

(
Id 0

∂xd+1:n

∂z1:d
diag(exp(αθ(z1:d)))

)

det(J) =
n∏

i=d+1

exp(αθ(z1:d)i ) = exp

(
n∑

i=d+1

αθ(z1:d)i

)

Non-volume preserving transformation in general since determinant can
be less than or greater than 1

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 8 17 / 35



Samples generated via Real-NVP

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 8 18 / 35



Latent space interpolations via Real-NVP

Using with four validation examples z(1), z(2), z(3), z(4), define interpolated
z as:

z = cosφ(z(1)cosφ′ + z(2)sinφ′) + sinφ(z(3)cosφ′ + z(4)sinφ′)

with manifold parameterized by φ and φ′.
Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 8 19 / 35



Lecture Outline

1 Recap and Motivation for Normalizing Flows

Triangular Jacobians

2 Nonlinear Independent Components Estimation (Dinh et al. 2014)

3 Real NVP (Dinh et al. 2017)

4 Masked Autoregressive Flow (Papamakarios et al., 2017)

5 Inverse Autoregressive Flow (Kingma et al., 2016)

6 Probability Distillation and Parallel Wavenet

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 8 20 / 35



Autoregressive models as flow models

Consider a Gaussian autoregressive model:

p(x) =
n∏

i=1

p(xi |x<i )

such that p(xi | x<i ) = N (µi (x1, · · · , xi−1), exp(αi (x1, · · · , xi−1))2).

Here, µi (·) and αi (·) are neural networks for i > 1 and constants for
i = 1.

Sampler for this model:

Sample zi ∼ N (0, 1) for i = 1, · · · , n
Let x1 = exp(α1)z1 + µ1. Compute µ2(x1), α2(x1)
Let x2 = exp(α2)z2 + µ2. Compute µ3(x1, x2), α3(x1, x2)
Let x3 = exp(α3)z3 + µ3. ...

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 8 21 / 35



Autoregressive models as flow models

Consider a Gaussian autoregressive model:

p(x) =
n∏

i=1

p(xi |x<i )

such that p(xi | x<i ) = N (µi (x1, · · · , xi−1), exp(αi (x1, · · · , xi−1))2).

Sampler for this model:

Sample zi ∼ N (0, 1) for i = 1, · · · , n
Let x1 = exp(α1)z1 + µ1. Compute µ2(x1), α2(x1) etc.

Flow interpretation: transforms samples from the standard Gaussian
(z1, z2, . . . , zn) to those generated from the model (x1, x2, . . . , xn) via
invertible transformations (parameterized by µi (·), αi (·))

Can be used as flow layers
Independent of ordering!
Can be composed

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 8 22 / 35



Masked Autoregressive Flow (MAF)

Masked Autoregressive Flow (MAF) is a bijective normalizing flow
transformation f : X → Z that implements this intuition:

Forward mapping from z 7→ x:

Let x1 = exp(α1)z1 + µ1. Compute µ2(x1), α2(x1)
Let x2 = exp(α2)z2 + µ2. Compute µ3(x1, x2), α3(x1, x2)

Sampling is sequential and slow (like autoregressive): O(n) time

Figure adapted from Eric Jang’s blog
Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 8 23 / 35



Masked Autoregressive Flow (MAF)

Inverse mapping from x 7→ z:
Compute all µi , αi (can be done in parallel using e.g., MADE)
Let z1 = (x1 − µ1)/ exp(α1) (scale and shift)
Let z2 = (x2 − µ2)/ exp(α2)
Let z3 = (x3 − µ3)/ exp(α3) ...

Jacobian is lower diagonal, hence determinant can be computed
efficiently
Likelihood evaluation is easy and parallelizable (like MADE)

Figure adapted from Eric Jang’s blog
Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 8 24 / 35



MADE: Masked Autoencoder for Distribution Estimation

1 Challenge: Compute the µi in parallel and reuse weights.

2 Solution: use masks to disallow certain paths (Germain et al., 2015).
Suppose ordering is x2, x3, x1.

1 The unit producing the parameters for p(x2) is not allowed to depend
on any input. Unit for p(x3|x2) only on x2. And so on...

2 For each unit in a hidden layer, pick an integer i in [1, n − 1]. Unit
made to depend on the first i inputs in ordering.

3 Add mask to preserve this invariant: connect to all units in previous
layer with smaller or equal assigned number (strictly < in final layer)

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 8 25 / 35



NICE and Real NVP as MAF

Note that NICE and Real NVP are special cases of the MAF framework.

But scale and shift statistics can be computed in a single pass.

Therefore sampling and posterior inference is fast and a MADE-style
approach is not needed.

Figure from Eric Jang’s blog
Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 8 26 / 35



Inverse Autoregressive Flow (IAF)

Inverse Autoregressive Flow (IAF) is a bijective normalizing flow transformation
f : X → Z that implements the opposite sampling approach:

Forward mapping from z 7→ x (parallel):

Sample zi ∼ N (0, 1) for i = 1, · · · , n
Compute all µi (z<i ), αi (z<i ) (can be done in parallel)
Let x1 = exp(α1)z1 + µ1

Let x2 = exp(α2)z2 + µ2 ...

Figure adapted from Eric Jang’s blog
Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 8 27 / 35



Inverse Autoregressive Flow (IAF)

Inverse mapping from x 7→ z (sequential):

Let z1 = (x1 − µ1)/ exp(α1). Compute µ2(z1), α2(z1)
Let z2 = (x2 − µ2)/ exp(α2). Compute µ3(z1, z2), α3(z1, z2)

Fast to sample from, slow to evaluate likelihoods of data points (train)

Note: Fast to evaluate likelihoods of a generated point (cache z1, z2, . . . , zn)

Figure adapted from Eric Jang’s blog
Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 8 28 / 35



IAF is inverse of MAF

Figure: Inverse pass of MAF (left) vs. Forward pass of IAF (right)

Interchanging z and x in the inverse transformation of MAF gives the
forward transformation of IAF

Similarly, forward transformation of MAF is inverse transformation of
IAF

Figure adapted from Eric Jang’s blog
Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 8 29 / 35



IAF vs. MAF

Computational tradeoffs

MAF: Fast likelihood evaluation, slow sampling
IAF: Fast sampling, slow likelihood evaluation

MAF more suited for training based on MLE, density estimation

IAF more suited for real-time generation

Can we get the best of both worlds?

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 8 30 / 35



Recall: WaveNet (van den Oord et al., 2016)

State of the art model for speech:

Dilated convolutions increase the receptive field: kernel only touches the
signal at every 2d entries.

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 8 31 / 35



Accelerating Wavenet

Challenge: How to make sampling fast?

Solution: Two part training with a teacher and student model

Teacher is parameterized by MAF. Teacher can be efficiently trained
via MLE
Once teacher is trained, initialize a student model parameterized by
IAF. Student model cannot efficiently evaluate density for external
datapoints but allows for efficient sampling

Key observation: IAF can also efficiently evaluate densities of its
own generations (via caching the noise variates z1, z2, . . . , zn)

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 8 32 / 35



Model Distillation

Probability density distillation: Student distribution is trained to
minimize the KL divergence between student (s) and teacher (t)

DKL(s, t) = Ex∼s [log s(x)− log t(x)]

Evaluating and optimizing Monte Carlo estimates of this objective
requires:

Samples x from student model (IAF)
Density of x assigned by student model
Density of x assigned by teacher model (MAF)

All operations above can be implemented efficiently

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 8 33 / 35



Parallel Wavenet: Overall algorithm

Training

Step 1: Train teacher model (MAF) via MLE
Step 2: Train student model (IAF) to minimize KL divergence with
teacher

Test-time: Use student model for testing

Improves sampling efficiency over original Wavenet (vanilla
autoregressive model) by 1000x!

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 8 34 / 35



Summary of Normalizing Flow Models

Transform simple distributions into more complex distributions via
change of variables

Normalizing Flows Pros:

Exact marginal likelihood p(x) is tractable to compute and optimize
Exact posterior inference p(z |x) is tractable

Normalizing Flows Cons:

Only works for continuous variables
The dimensionality of z and x must be the same (can pose
computational challenges).
Places important constraints on what model family we can use.

Strategies for constructing flows

Composition of simple bijections
Triangular Jacobian
Can be interpreted as model with a certain auto-regressive structure
that influences speed of forward and inverse sampling.

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 8 35 / 35


