
Generative Adversarial Networks

Volodymyr Kuleshov

Cornell Tech

Lecture 9

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 9 1 / 37

Announcements

Assignment 2 is out!

Programming assignment in PyTorch
Use starter code. Submit a PDF for other answers.
Code can run on CPU.

Presentation topics list is on Piazza

Have freed up two slots for presentations for the remaining teams.

Submission link for the project proposal is open on Gradescope.

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 9 2 / 37

Lecture Outline

1 Recap of Normalizing Flows

IAF vs. MAF
Model Distillation and Parallel Wavenet

2 Towards Likelihood-Free Learning

Motivation
Two-Sample Tests
Unsupervised Learning as Supervised Learning

3 Generative Adversarial Networks

Definition
Objective Functions
Optimization Issues

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 9 3 / 37

Masked Autoregressive Flow (MAF)

Masked Autoregressive Flow (MAF) is a bijective normalizing flow
transformation f : X → Z that implements this intuition:

Forward mapping from z 7→ x:

Let x1 = exp(α1)z1 + µ1. Compute µ2(x1), α2(x1)
Let x2 = exp(α2)z2 + µ2. Compute µ3(x1, x2), α3(x1, x2)

Sampling is sequential and slow (like autoregressive): O(n) time

Figure adapted from Eric Jang’s blog
Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 9 4 / 37

Masked Autoregressive Flow (MAF)

Inverse mapping from x 7→ z:
Compute all µi , αi (can be done in parallel using e.g., MADE)
Let z1 = (x1 − µ1)/ exp(α1) (scale and shift)
Let z2 = (x2 − µ2)/ exp(α2)
Let z3 = (x3 − µ3)/ exp(α3) ...

Jacobian is lower diagonal, hence determinant can be computed
efficiently
Likelihood evaluation is easy and parallelizable (like MADE)

Figure adapted from Eric Jang’s blog
Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 9 5 / 37

Inverse Autoregressive Flow (IAF)

Inverse Autoregressive Flow (IAF) is a bijective normalizing flow transformation
f : X → Z that implements the opposite sampling approach:

Forward mapping from z 7→ x (parallel):

Sample zi ∼ N (0, 1) for i = 1, · · · , n
Compute all µi (z<i), αi (z<i) (can be done in parallel)
Let x1 = exp(α1)z1 + µ1

Let x2 = exp(α2)z2 + µ2 ...

Figure adapted from Eric Jang’s blog
Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 9 6 / 37

Inverse Autoregressive Flow (IAF)

Inverse mapping from x 7→ z (sequential):

Let z1 = (x1 − µ1)/ exp(α1). Compute µ2(z1), α2(z1)
Let z2 = (x2 − µ2)/ exp(α2). Compute µ3(z1, z2), α3(z1, z2)

Fast to sample from, slow to evaluate likelihoods of data points (train)

Note: Fast to evaluate likelihoods of a generated point (cache z1, z2, . . . , zn)

Figure adapted from Eric Jang’s blog
Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 9 7 / 37

IAF is inverse of MAF

Figure: Inverse pass of MAF (left) vs. Forward pass of IAF (right)

Interchanging z and x in the inverse transformation of MAF gives the
forward transformation of IAF

Similarly, forward transformation of MAF is inverse transformation of
IAF

Figure adapted from Eric Jang’s blog
Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 9 8 / 37

IAF vs. MAF

Computational tradeoffs

MAF: Fast likelihood evaluation, slow sampling
IAF: Fast sampling, slow likelihood evaluation

MAF more suited for training based on MLE, density estimation

IAF more suited for real-time generation

Can we get the best of both worlds?

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 9 9 / 37

Recall: WaveNet (van den Oord et al., 2016)

State of the art model for speech:

Dilated convolutions increase the receptive field: kernel only touches the
signal at every 2d entries.

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 9 10 / 37

Accelerating Wavenet

Challenge: How to make sampling fast?

Solution: Two part training with a teacher and student model

Teacher is parameterized by MAF. Teacher can be efficiently trained
via MLE
Once teacher is trained, initialize a student model parameterized by
IAF. Student model cannot efficiently evaluate density for external
datapoints but allows for efficient sampling

Key observation: IAF can also efficiently evaluate densities of its
own generations (via caching the noise variates z1, z2, . . . , zn)

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 9 11 / 37

Model Distillation

Probability density distillation: Student distribution is trained to
minimize the KL divergence between student (s) and teacher (t)

DKL(s, t) = Ex∼s [log s(x)− log t(x)]

Evaluating and optimizing Monte Carlo estimates of this objective
requires:

Samples x from student model (IAF)
Density of x assigned by student model
Density of x assigned by teacher model (MAF)

All operations above can be implemented efficiently

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 9 12 / 37

Parallel Wavenet: Overall algorithm

Training

Step 1: Train teacher model (MAF) via MLE
Step 2: Train student model (IAF) to minimize KL divergence with
teacher

Test-time: Use student model for testing

Improves sampling efficiency over original Wavenet (vanilla
autoregressive model) by 1000x!

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 9 13 / 37

Recap

Model families

Autoregressive Models: pθ(x) =
∏n

i=1 pθ(xi |x<i)
Variational Autoencoders: pθ(x) =

∫
pθ(x, z)dz

Normalizing Flow Models: pX (x; θ) = pZ
(
f−1
θ (x)

) ∣∣∣det(∂f−1
θ (x)
∂x

)∣∣∣
All the above families are based on maximizing likelihoods (or
approximations)

Is the likelihood the right objective for measuring the similarity of a
model to data?

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 9 14 / 37

Towards likelihood-free learning

What are some pros and cons of using likelihood?

Optimal generative model will give best sample quality and highest
test log-likelihood

For imperfect models, achieving high log-likelihoods might not always
imply good sample quality, and vice-versa (Theis et al., 2016)

Likelihood is only one possible metric to define the distance between
two distributions

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 9 15 / 37

Towards likelihood-free learning

Example: Great test log-likelihoods, poor samples. E.g., For a
discrete noise mixture model pθ(x) = 0.01pdata(x) + 0.99pnoise(x)

99% of the samples are just noise
Taking logs, we get a lower bound

log pθ(x) = log[0.01pdata(x) + 0.99pnoise(x)]

≥ log 0.01pdata(x) = log pdata(x)− log 100

For expected likelihoods, we know that

Lower bound

Epdata [log pθ(x)] ≥ Epdata [log pdata(x)]− log 100

Upper bound (via non-negativity of KL)

Epdata [log pdata(x))] ≥ Epdata [log pθ(x)]
As we increase the dimension of x, absolute value of log pdata(x)
increases proportionally but log 100 remains constant. Hence,
Epdata

[log pθ(x)] ≈ Epdata
[log pdata(x)] in very high dimensions

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 9 16 / 37

Towards likelihood-free learning

Example: Great samples, poor test log-likelihoods. E.g., Memorizing
training set

Samples look exactly like the training set (cannot do better!)
Test set will have zero probability assigned (cannot do worse!)

The above cases suggest that it might be useful to disentangle
likelihoods and samples

Likelihood-free learning consider objectives that do not depend
directly on a likelihood function

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 9 17 / 37

Comparing distributions via samples

Given a finite set of samples from two distributions S1 = {x ∼ P} and
S2 = {x ∼ Q}, how can we tell if these samples are from the same
distribution? (i.e., P = Q?)

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 9 18 / 37

Two-sample tests

Given S1 = {x ∼ P} and S2 = {x ∼ Q}, a two-sample test
considers the following hypotheses

Null hypothesis H0: P = Q
Alternate hypothesis H1: P 6= Q

Test statistic T compares S1 and S2 e.g., difference in means,
variances of the two sets of samples

If T is less than a threshold α, then accept H0 else reject it

Key observation: Test statistic is likelihood-free since it does not
involve the densities P or Q (only samples)

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 9 19 / 37

Generative modeling and two-sample tests

Apriori we assume direct access to S1 = D = {x ∼ pdata}
In addition, we have a model distribution pθ

Assume that the model distribution permits efficient sampling (e.g.,
directed models). Let S2 = {x ∼ pθ}
Alternate notion of distance between distributions: Train the
generative model to minimize a two-sample test objective between S1
and S2

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 9 20 / 37

Two-Sample Test via a Discriminator

Finding a two-sample test objective in high dimensions is hard

In the generative model setup, we know that S1 and S2 come from
different distributions pdata and pθ respectively

Key idea: Learn a statistic that maximizes a suitable notion of
distance between the two sets of samples S1 and S2

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 9 21 / 37

Unsupervised Learning as Supervised Learning

Consider balanced mixture of distributions P(X |Y = 0) and P(X |Y = 1).

We have

P(Y = 1|X) =
P(X |Y = 1)P(Y = 1)

P(X)
=

P(X |Y = 1)

P(X |Y = 0) + P(X |Y = 1)

=
1

1 + P(X |Y=0)
P(X |Y=1)

= σ

(
log

P(X |Y = 0)

P(X |Y = 1)

)

Hence, we can use logistic regression trained on (X ,Y) ∼ P pairs to
estimate the log odds

log
P(X |Y = 0)

P(X |Y = 1)
.

Old idea: can be used for outlier detection, density estimation,
noise-contrastive learning, etc.

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 9 22 / 37

Generative Adversarial Networks

A two player minimax game between a generator and a
discriminator

x

z

Gθ

Generator
Directed, latent variable model with a deterministic mapping between z
and x given by Gθ
Minimizes a two-sample test objective (in support of the null
hypothesis pdata = pθ)

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 9 23 / 37

Generative Adversarial Networks

A two player minimax game between a generator and a discriminator

x

y

Dφ

Discriminator
Any function (e.g., neural network) which tries to distinguish “real”
samples from the dataset and “fake” samples generated from the model
Maximizes the two-sample test objective (in support of the alternate
hypothesis pdata 6= pθ)

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 9 24 / 37

Example of GAN objective

Training objective for discriminator:

max
D

V (G ,D) = Ex∼pdata [logD(x)] + Ex∼pG [log(1− D(x))]

For a fixed generator G , the discriminator is performing binary
classification with the cross entropy objective

Assign probability 1 to true data points x ∼ pdata
Assing probability 0 to fake samples x ∼ pG

Optimal discriminator

D∗
G (x) =

pdata(x)

pdata(x) + pG (x)
= σ

(
log

pdata(x)

pG (x)

)

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 9 25 / 37

Example of GAN objective

Training objective for generator:

min
G

V (G ,D) = Ex∼pdata [logD(x)] + Ex∼pG [log(1− D(x))]

For the optimal discriminator D∗
G (·), we have

V (G ,D∗
G (x))

= Ex∼pdata

[
log pdata(x)

pdata(x)+pG (x)

]
+ Ex∼pG

[
log pG (x)

pdata(x)+pG (x)

]
= Ex∼pdata

[
log pdata(x)

pdata(x)+pG (x)

2

]
+ Ex∼pG

[
log pG (x)

pdata(x)+pG (x)

2

]
− log 4

= DKL

[
pdata,

pdata + pG
2

]
+ DKL

[
pG ,

pdata + pG
2

]
︸ ︷︷ ︸

2×Jenson-Shannon Divergence (JSD)

− log 4

= 2DJSD [pdata, pG]− log 4

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 9 26 / 37

Jenson-Shannon Divergence

Also called as the symmetric KL divergence

DJSD [p, q] =
1

2

(
DKL

[
p,

p + q

2

]
+ DKL

[
q,

p + q

2

])
Properties

DJSD [p, q] ≥ 0
DJSD [p, q] = 0 iff p = q
DJSD [p, q] = DJSD [q, p]√
DJSD [p, q] satisfies triangle inequality → Jenson-Shannon Distance

Optimal generator for the JSD/Negative Cross Entropy GAN

pG = pdata

For the optimal discriminator D∗
G∗(·) and generator G ∗(·), we have

V (G ∗,D∗
G∗(x)) = − log 4

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 9 27 / 37

Jenson-Shannon Divergence

The Jenson-Shannon divergence is mode-seeking.

Consider a multi-modal data distribution that we are trying to
approximating with a uni-model estimator.

The KL divergence (log-likelihood objective) tries to average both
modes. The JSD objective favors fitting one mode well. Recall:

D(Pdata||Pθ) = Ex∼Pdata

[
log

(
Pdata(x)

Pθ(x)

)]
=
∑
x

Pdata(x) log
Pdata(x)

Pθ(x)

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 9 28 / 37

The GAN training algorithm

Sample minibatch of m training points x(1), x(2), . . . , x(m) from D
Sample minibatch of m noise vectors z(1), z(2), . . . , z(m) from pz

Update the generator parameters θ by stochastic gradient descent

∇θV (Gθ,Dφ) =
1

m
∇θ

m∑
i=1

log(1− Dφ(Gθ(z(i))))

Update the discriminator parameters φ by stochastic gradient ascent

∇φV (Gθ,Dφ) =
1

m
∇φ

m∑
i=1

[logDφ(x(i)) + log(1− Dφ(Gθ(z(i))))]

Repeat for fixed number of epochs

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 9 29 / 37

Alternating optimization in GANs

min
θ

max
φ

V (Gθ,Dφ) = Ex∼pdata [logDφ(x)] + Ez∼p(z)[log(1− Dφ(Gθ(z)))]

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 9 30 / 37

Frontiers in GAN research

GANs have been successfully applied to several domains and tasks
However, working with GANs can be very challenging in practice

Unstable optimization
Mode collapse
Evaluation

Many bag of tricks applied to train GANs successfully

Image Source: Ian Goodfellow. Samples from Goodfellow et al., 2014, Radford et
al., 2015, Liu et al., 2016, Karras et al., 2017, Karras et al., 2018
Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 9 31 / 37

Optimization challenges

Theorem (informal): If the generator updates are made in function
space and discriminator is optimal at every step, then the generator is
guaranteed to converge to the data distribution
Unrealistic assumptions!
In practice, the generator and discriminator loss keeps oscillating
during GAN training

Figure: *

Source: Mirantha Jayathilaka

No robust stopping criteria in practice (unlike MLE)Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 9 32 / 37

Mode Collapse

GANs are notorious for suffering from mode collapse

Intuitively, this refers to the phenomena where the generator of a
GAN collapses to one or few samples (dubbed as “modes”)

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 9 33 / 37

Mode Collapse

True distribution is a mixture of Gaussians

The generator distribution keeps oscillating between different modes

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 9 34 / 37

Mode Collapse

Fixes to mode collapse are mostly empirically driven: alternate
architectures, adding regularization terms, injecting small noise
perturbations etc.

https://github.com/soumith/ganhacks

How to Train a GAN? Tips and tricks to make GANs work by
Soumith Chintala

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 9 35 / 37

https://github.com/soumith/ganhacks

Beauty lies in the eyes of the discriminator

GAN generated art auctioned at Christie’s.
Expected Price: $7, 000− $10, 000
True Price: $432, 500

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 9 36 / 37

Summary of GAN Models

GAN Pros:

Very high-quality samples.
Can optimize a wide range of divergences between probabilities (next
lecture)
Broadly applicable: only need sampling from G !

GAN Cons:

Only works for continuous variables
Difficult to train
Suffers from mode collapse

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models Lecture 9 37 / 37

